Recall: Steps of Compilation

source program → Compiler → target program

Lexing → Parsing → Intermediate Code Generation → Optimization
Implementing Parsers

- Many efficient techniques for parsing
 - I.e., turning strings into parse trees
 - Examples
 - LL(k), SLR(k), LR(k), LALR(k)...
 - Take CMSC 430 for more details

- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm
 - Other algorithms are bottom-up

Top-Down Parsing

\[
E \rightarrow id = n \mid \{ L \} \\
L \rightarrow E ; L \mid \epsilon
\]

(Assume: id is variable name, n is integer)

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}
Bottom-up Parsing

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }:

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different.

Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)
- Example grammar
 - S → aA, A → Bc, B → b
- Example parse
 - abc ⇒ aBc ⇒ aA ⇒ S
 - Derivation happens in reverse
- Something to look forward to in CMSC 430
- Complicated to use; requires tool support
 - Bison, yacc produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it's almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two

Recursive Descent Parsing

- Goal
 - Determine if we can produce the string to be parsed from the grammar's start symbol
- Approach
 - Recursively replace nonterminal with RHS of production
- At each step, we'll keep track of two facts
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

- At each step, 3 possible cases
 - If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error

Parsing Example

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E \ ; \ L \mid \epsilon \]
- Here \(n \) is an integer and \(id \) is an identifier

- One input might be
 - \{ \(x = 3 ; \ { y = 4 ; } ; \} \)
 - This would get turned into a list of tokens
 - \{ \(x = 3 \ ; \ { y = 4 \ ; } \) \}
 - And we want to turn it into a parse tree
Parsing Example (cont.)

E → id = n | { L }
L → E ; L | ε

{ x = 3 ; { y = 4 ; } ; }

Recursive Descent Parsing (cont.)

- **Key step**
 - Choosing which production should be selected

- **Two approaches**
 - **Backtracking**
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - **Predictive parsing**
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

Motivating example

• The lookahead is \(x \)
• Given grammar \(S \rightarrow xyz \mid abc \)
 \(\Rightarrow \) Select \(S \rightarrow xyz \) since 1st terminal in RHS matches \(x \)
• Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 \(\Rightarrow \) Select \(S \rightarrow A \), since A can derive string beginning with \(x \)

In general

• Choose a production that can derive a sentential form beginning with the lookahead
• Need to know what terminal may be first in any sentential form derived from a nonterminal / production

First Sets

Definition

• \(\text{First}(y) \), for any terminal or nonterminal \(y \), is the set of initial terminals of all strings that \(y \) may expand to
• We’ll use this to decide what production to apply

Examples

• Given grammar \(S \rightarrow xyz \mid abc \)
 \(\Rightarrow \) First(\(xyz \)) = \{ \(x \) \}, First(\(abc \)) = \{ \(a \) \}
 \(\Rightarrow \) First(\(S \)) = First(\(xyz \)) \cup First(\(abc \)) = \{ \(x \), \(a \) \}
• Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 \(\Rightarrow \) First(\(x \)) = \{ \(x \) \}, First(\(y \)) = \{ \(y \) \}, First(\(A \)) = \{ \(x \), \(y \) \}
 \(\Rightarrow \) First(\(z \)) = \{ \(z \) \}, First(\(B \)) = \{ \(z \) \}
 \(\Rightarrow \) First(\(S \)) = \{ \(x \), \(y \), \(z \) \}
Calculating First(γ)

- For a terminal a
 - First(a) = { a }

- For a nonterminal N
 - If N → ε, then add ε to First(N)
 - If N → α₁ α₂ ... αₙ, then (note the αᵢ are all the symbols on the right side of one single production):
 - Add First(α₁, α₂ ... αₙ) to First(N), where First(α₁, α₂ ... αₙ) is defined as
 - First(αᵢ) if ε ∉ First(αᵢ)
 - Otherwise (First(α₁) − ε) ∪ First(α₂ ... αₙ)
 - If ε ∈ First(αᵢ) for all i, 1 ≤ i ≤ k, then add ε to First(N)

First() Examples

| E → id = n | { L } | E → id = n | { L } | ε |
| L → E ; L | ε | L → E ; L |

First(id) = { id } First(id) = { id } First(id) = { id }
First("=") = { "=" } First("=") = { "=" } First("=") = { "=" }
First(n) = { n } First(n) = { n } First(n) = { n }
First("{")= { "{" } First("{")= { "{" } First("{")= { "{" }
First("")="{ "}" } First("")="{ "}" } First("")="{ "}" }
First(";"=";" } First(";"=";" } First(";"=";" }
First(E) = { id, "{" } First(E) = { id, "{" , ε } First(E) = { id, "{" , ε }
First(L) = { id, "{" , ε } First(L) = { id, "{" , ε , ";" } First(L) = { id, "{" , ε , ";" }
Recursive Descent Parser Implementation

- For terminals, create function `match(a)`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Otherwise fails with a parse error if lookahead is not `a`
 - In algorithm descriptions, consider `parse_a`, `parse_term(a)` to be aliases for `match(a)`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse

Parser Implementation (cont.)

- The body of `parse_N` for a nonterminal `N` does the following
 - Let `N → β₁ | ... | βₖ` be the productions of `N`
 - Here βᵢ is the entire right side of a production- a sequence of terminals and nonterminals
 - Pick the production `N → βᵢ` such that the lookahead is in `First(βᵢ)`
 - It must be that `First(βᵢ) ∩ First(βⱼ) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
 - Suppose `βᵢ = α₁ α₂ ... αₙ`. Then call `parse_α₁(); ... ; parse_αₙ()` to match the expected right-hand side, and return
Parser Implementation (cont.)

- Parse is built on procedure calls
- Procedures may be (mutually) recursive

Recursive Descent Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$
- Parser
  ```c
  parse_S( ) {
    if (lookahead == "x") {
      match("x"); match("y"); match("z");  // S \rightarrow xyz
    }
    else if (lookahead == "a") {
      match("a"); match("b"); match("c");  // S \rightarrow abc
    }
    else error( );
  }
  ```
Recursive Descent Parser

- **Given grammar**
 \[
 S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z
 \]

 - First(A) = \{ x, y \}, First(B) = \{ z \}

- **Parser**

  ```
  parse_S( ) {
      if ((lookahead == "x") ||
          (lookahead == "y"))
          parse_A( ); // S \rightarrow A
      else if (lookahead == "z")
          parse_B( ); // S \rightarrow B
      else error( );
  }
  ```

  ```
  parse_A( ) {
      if (lookahead == "x")
          match("x"); // A \rightarrow x
      else if (lookahead == "y")
          match("y"); // A \rightarrow y
      else error( );
  }
  ```

  ```
  parse_B( ) {
      if (lookahead == "z")
          match("z"); // B \rightarrow z
      else error( );
  }
  ```

Example

- **E → id = n | \{ L \}**
 - First(E) = \{ id, "{" \}

- **L → E ; L | ε**

  ```
  parse_E( ) {
      if ((lookahead == "id") ||
          (lookahead == "="))
          match("id");
      match("="); // E → id =
      match("n");
      }
  else if (lookahead == ")")
      match(";"); // E → E ; L
      parse_L( );
      }
  else if (lookahead == ";")
      match(";"); // E → \{ L \}
      parse_L( );
      }
  else error( );
  ```

  ```
  parse_L( ) {
      if ((lookahead == "id") ||
          (lookahead == ")")})
          parse_E( );
      match(";"); // L → E ; L
      parse_L( );
      }
  else ; // L → ε
**Things to Notice**

- If you draw the execution trace of the parser
  - You get the parse tree

**Examples**

- **Grammar**
  
  ```
 S → xyz
 S → abc
  ```

- **String “xyz”**
  
  ```
 parse_S()
 match("x")
 match("y")
 match("z")
  ```

- **Grammar**
  
  ```
 S → A | B
 A → x | y
 B → z
  ```

- **String “x”**
  
  ```
 parse_S()
  ```

**Things to Notice (cont.)**

- This is a **predictive** parser
  - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
  - Production First sets overlap
  - Production First sets contain $\epsilon$
  - Possible infinite recursion

- Does not mean grammar is not usable
  - Just means this parsing method not powerful enough
  - May be able to change grammar
Conflicting FIRST Sets

Consider parsing the grammar \( E \rightarrow ab \mid ac \)
- \( \text{First}(ab) = a \)  
  Parser cannot choose between RHS based on lookahead!
- \( \text{First}(ac) = a \)

Parser fails whenever \( A \rightarrow \alpha_1 \mid \alpha_2 \) and
- \( \text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon \) or \( \emptyset \)

Solution
- Rewrite grammar using left factoring

Left Factoring Algorithm

Given grammar
- \( A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta \)

Rewrite grammar as
- \( A \rightarrow xL \mid \beta \)
- \( L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \)

Repeat as necessary

Examples
- \( S \rightarrow ab \mid ac \quad \Rightarrow S \rightarrow aL \quad L \rightarrow b \mid c \)
- \( S \rightarrow abcA \mid abB \mid a \quad \Rightarrow S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \varepsilon \)
- \( L \rightarrow bcA \mid bB \mid \varepsilon \quad \Rightarrow L \rightarrow bL' \mid \varepsilon \quad L' \rightarrow cA \mid B \)
Alternative Approach

- Change structure of parser
  - First match common prefix of productions
  - Then use lookahead to chose between productions

Example
- Consider parsing the grammar \( E \rightarrow a+b \mid a*b \mid a \)

```cpp
parse_E() {
 match("a"); // common prefix
 if (lookahead == "+") {
 // E \rightarrow a+b
 match(""); match("b");
 }
 if (lookahead == "*") {
 // E \rightarrow a*b
 match("*"); match("b");
 }
 else { }
 // E \rightarrow a
}
```

Left Recursion

- Consider grammar \( S \rightarrow Sa \mid \epsilon \)
- Try writing parser

```cpp
parse_S() {
 if (lookahead == "a") {
 parse_S();
 match("a"); // S \rightarrow Sa
 }
 else { }
}
```
- Body of `parse_S( )` has an infinite loop
  - if `lookahead = "a"` then `parse_S( )`
- Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar $S \rightarrow aS \mid \varepsilon$

- Again, $\text{First}(aS) = a$
- Try writing parser

```java
parse_S() {
 if (lookahead == "a") {
 match("a");
 parse_S(); // S → aS
 } else {
 }
}
```

- Will $\text{parse}_S()$ infinite loop?
  - Invoking match( ) will advance lookahead, eventually stop
- Top down parsers handles grammar w/ right recursion

Algorithm To Eliminate Left Recursion

- Given grammar
  - $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta$
    - $\beta$ must exist or derivation will not yield string
- Rewrite grammar as (repeat as needed)
  - $A \rightarrow \beta L$
  - $L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \varepsilon$
- Replaces left recursion with right recursion
- Examples
  - $S \rightarrow Sa \mid \varepsilon$  $\Rightarrow S \rightarrow L \quad L \rightarrow aL \mid \varepsilon$
  - $S \rightarrow Sa \mid Sb \mid c$  $\Rightarrow S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \varepsilon$
What’s Wrong With Parse Trees?

- Parse trees contain too much information
  - Example
    - Parentheses
    - Extra nonterminals for precedence
  - This extra stuff is needed for parsing

- But when we want to reason about languages
  - Extra information gets in the way (too much detail)

Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
  - Note that grammars describe trees
  - So do OCaml datatypes (which we’ll see later)
  - \( E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E) \)

```
S → aA
Node parse_S() {
 Node n1, n2;
 if (lookahead == "a") {
 n1 = match("a");
 n2 = parse_A();
 return new Node(n1,n2);
 }
}
```

Producing an AST

- To produce an AST, we can modify the `parse()` functions to construct the AST along the way
  - `match(a)` returns an AST node (leaf) for `a`
  - `Parse_A` returns an AST node for `A`
    - AST nodes for RHS of production become children of LHS node

```
Example
- S → aA
```