CMSC 330: Organization of Programming Languages

Operational Semantics

Recall Architecture of Compilers, Interpreters

Front end: syntax, (possibly) typechecking, other checks
Back end: semantics (i.e. execution)
Specifying Syntax, Semantics

- We have seen how the syntax of a programming language may be specified precisely
 - Regular expressions
 - Context-free grammars

- What about formal methods for defining the semantics of a programming language?
 - I.e., what does a program mean / do?

Formal Semantics of a Prog. Lang.

- Mathematical description of all possible computations performed by programs written in that language

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Formal Semantics (cont.)

- Denotational semantics: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation
- Operational semantics: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation
- Axiomatic semantics
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs

This Course: Operational Semantics

- We will show how an operational semantics may be defined using a subset of OCaml
- Approach: use rules to define a relation
 \[E \Rightarrow v \]
 - \(E \): expression in OCaml subset
 - \(v \): value that results from evaluating \(E \)
- To begin with, need formal definitions of:
 - Set \(\text{Exp} \) of expressions
 - Set \(\text{Val} \) of values
Defining Exp

- Recall: operational semantics defines what happens in backend
 - Front end parses code into abstract syntax trees (ASTs)
 - So inputs to backend are ASTs
- How to define ASTs?
 - Standard approach: using grammars!
 - Idea: grammar defines abstract syntax (no parentheses, grouping constructs, etc.; grouping is implicit)

OCaml Abstract Syntax

\[
E ::= x | n | \text{true} | \text{false} | []
\]
\[
| E \, op \, E \quad (op \in \{+,-,\times,\\div,=,<,>,::,\text{ etc.}\})
\]
\[
| l_op \, E \quad (l_op \in \{\text{hd, tl}\})
\]
\[
| \text{if} \, E \, \text{then} \, E \, \text{else} \, E
\]
\[
| \text{fun} \, x = E \, | \, E \, E \, | \, \text{let} \, x = E \, \text{in} \, E
\]
- \(x\) may be any identifier
- \(n\) is any numeral (digit sequence, with optional -).
- \text{true} and \text{false} stand for the two boolean constants
- \([]\) is the empty list
- We use = in \text{fun} instead of \text{->} to avoid confusion

\(\text{Exp} = \text{set of (type-correct) ASTs defined by grammar}\)
- Note that the grammar is ambiguous
 - OK because not using grammar for parsing
 - But for defining the set of all syntactically legal terms
Values

What can results be?
- Integers
- Booleans
- Lists
- Functions

We will deal with first three initially

Formal Definition of Val

Let
- \(\mathbb{Z} = \{..., -1, 0, -1, ...\} \) be the (math) set of integers
- \(\mathbb{B} = \{\text{ff}, \text{tt}\} \) be the (math) set of booleans
- nil be a distinguished value (empty list)

Then Val is the smallest set such that
- \(\mathbb{Z}, \mathbb{B} \subseteq \text{Val} \) and nil \(\in \) Val
- If \(v_1, v_2 \in \text{Val} \) then \(\langle v_1, v_2 \rangle \in \text{Val} \)

“Smallest set”?
- Every integer and boolean is a value, as is nil
- Any pair of values is also a value
Operations on Val

- Basic operations will be assumed: +, -, *, /, =, <, ≤, etc.
- Not all operations are applicable to all values!
 - tt + ff is undefined
 - So is 1 + nil
- A key purpose of type checking is to prevent these undefined operations from occurring during execution

Implementing Exp, Val in OCaml

E ::= x | n | true | false | | if E then E else E
 | fun x = E | E E | let x = E in E …

Val

Val

value =
 Val_Num of int
 | Val_Bool of bool
 | Val_Nil
 | Val_Pair of value *
 | …
Defining Evaluation (\Rightarrow)

- Approach is inductive and uses rules:
 - Idea: if the conditions $H_1 \ldots H_n$ (“hypotheses”) are true, the rule says the condition C (“conclusion”) below the line follows
 - Hypotheses, conclusion are statements about \Rightarrow; hypotheses involve subexpressions of conclusions
 - If $n=0$ (no hypotheses) then the conclusion is automatically true and is called an **axiom**
 - A “-” may be written in place of the hypothesis list in this case
 - Terminology: statements one is trying to prove are called **judgments**
 - This method is often called “Structural Operational Semantics (SOS)” or “Natural Semantics”

SOS Rules: Basic Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$-$</td>
<td>$n \Rightarrow n$</td>
</tr>
<tr>
<td>$-$</td>
<td>$\text{false} \Rightarrow \text{ff}$</td>
</tr>
<tr>
<td>$-$</td>
<td>$\text{true} \Rightarrow \text{tt}$</td>
</tr>
<tr>
<td>$-$</td>
<td>$[] \Rightarrow \text{nil}$</td>
</tr>
</tbody>
</table>

- Each basic entity evaluates to its corresponding value
- Note: axioms!
SOS Rules: Built-in Functions

- How about built-in functions (+, -, etc.)?
 - In OCaml, type-checking done in front end
 - Thus, ASTs coming to back end are type-correct
 - So we assume Exp contains type-correct ASTs
- We will use relevant operations on value side

SOS Rules: Built-in Functions

- For arithmetic, comparison operations, etc.

 \[
 \begin{array}{c|c}
 E_1 \Rightarrow v_1 & E_2 \Rightarrow v_2 \\
 \hline
 E_1 \text{ op } E_2 \Rightarrow v_1 \text{ op } v_2 \\
 \end{array}
 \]

- For ::

 \[
 \begin{array}{c|c}
 E_1 \Rightarrow v_1 & E_2 \Rightarrow v_2 \\
 \hline
 E_1 : : E_2 \Rightarrow \langle v_1, v_2 \rangle \\
 \end{array}
 \]

- Rules are recursive
- :: is implemented using pairing
 - Type system guarantees result is list
Rules for \(\text{hd}, \text{tl} \)

- \(E \Rightarrow (v_1, v_2) \)
 - \(\text{hd} \ E \Rightarrow v_1 \)
 - \(\text{tl} \ E \Rightarrow v_2 \)

- Note that the rules only apply if \(E \) evaluates to a pair of values
- Nothing in this rule requires the pair to correspond to a list
- The OCaml type system ensures this

Error Cases

- What if \(v_1, v_2 \) aren’t integers?
 - E.g., what if we write \(\text{false} + \text{true} \)?
 - It can be parsed in OCaml, but type checker will disallow it from being passed to back end
- In a language with dynamic strong typing (e.g. Ruby), rules include explicit type checks
 - \(E_1 \Rightarrow v_1 \quad E_2 \Rightarrow v_2 \)
 - \(E_1 + E_2 \Rightarrow v_1 + v_2 \)
- Convention: if no rules are applicable to an expression, its result is an error
Rules for If

\begin{align*}
\text{if } E_1 \text{ then } E_2 \text{ else } E_3 \Rightarrow v_2
\end{align*}

Notice that only one branch is evaluated

E.g.

- if true then 3 else 4 ⇒ 3
- if false then 3 else 4 ⇒ 4

Using Rules to Define Evaluation

- \(E \Rightarrow v \) holds if and only if a proof can be built
 - Proofs start with axioms, involve applications of rules whose hypotheses have been proved
 - No proof means \(E \not\Rightarrow v \)
- Proofs can be constructed in a goal-directed fashion
- Thus, function \(\text{eval} (E) = \{v \mid E \Rightarrow v\} \)
 - Determinism of semantics implies at most one element for any \(E \)
Rules for Identifiers

- The previous rules handle expressions that involve constants (e.g. 1, true) and operations
- What about variables?
 - These are allowed as expressions
 - How do we evaluate them?
- In a program, variables must be declared
 - The values that are part of the declaration are used to evaluate later occurrences of the variables
 - We will use environments to “hold” these declarations in our semantics

Environments

- Mathematically, an environment is a partial function from identifiers to values
 - If A is an environment, and id is an identifier, then A(id) can either be ...
 - ... a value (intuition: the variable has been declared)
 - ... or undefined (intuition: variable has not been declared)
 - An environment can also be thought of as a table
 - If A is
 \[
 \begin{array}{c|c}
 Id & Val \\
 \hline
 x & 0 \\
 y & ff \\
 \end{array}
 \]
 - then A(x) is 0, A(y) is ff, and A(z) is undefined
Notation, Operations on Environments

- \(\varepsilon \) is the empty environment (undefined for all ids)
- \(x = v \) is the environment that maps \(x \) to \(v \) and is undefined for all other ids
- If \(A \) and \(A' \) are environments then \(A, A' \) is the environment defined as follows:

 \[
 (A, A')(id) = \begin{cases}
 A'(id) & \text{if } A'(id) \text{ defined} \\
 A(id) & \text{if } A'(id) \text{ undefined but } A(id) \text{ defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]

- Idea: \(A' \) “overwrites” definitions in \(A \)

Semantics with Environments

- To give a semantics for identifiers, we will extend judgments from
 \[E \Rightarrow v \]
 to
 \[A; E \Rightarrow v \]
 where \(A \) is an environment
 - Idea: \(A \) is used to give values to the identifiers in \(E \)
 - \(A \) can be thought of as containing all the declarations made up to \(E \)
- Existing rules can be modified by inserting \(A \) everywhere in the judgments
Existing Rules Have To Be Modified

- E.g.
 \[
 \begin{align*}
 E_1 & \Rightarrow v_1 & E_2 & \Rightarrow v_2 \\
 E_1 + E_2 & \Rightarrow v_1 + v_2
 \end{align*}
 \]

- becomes
 \[
 \begin{align*}
 A; E_1 & \Rightarrow v_1 & A; E_2 & \Rightarrow v_2 \\
 A; E_1 + E_2 & \Rightarrow v_1 + v_2
 \end{align*}
 \]

- These modifications can be done systematically

Rule for Identifiers

- \[
 \begin{align*}
 A(x) & = v \\
 A; x & \Rightarrow v
 \end{align*}
 \]

- x is an identifier
- To determine its value v “look it up” in A!
Rule for Let binding

- We evaluate the first expression, and then evaluate the second expression in an environment extended to include a binding for x

\[
\begin{array}{c}
A; E_1 \Rightarrow v_1 \\
A, x=v_1; E_2 \Rightarrow v_2 \\
A; \text{let } x = E_1 \text{ in } E_2 \Rightarrow v_2
\end{array}
\]

Function Values

- So far our semantics handles
 - Constants
 - Built-in operations
 - Identifiers
- What about function definitions?
 - Recall form: \texttt{fun } x = E
 - To evaluate these expressions we need to add closures to our set of values
Closures

- ... are what OCaml function expressions evaluate to
- A closure consists of
 - Parameter (id)
 - Body (expression)
 - Environment (used to evaluate free variables in body)
- Formal extension to Val
 - if x is an id, E is an expression, and A is an environment
 - … then \((\lambda x.E, A) \in \text{Val} \)

Rule for Function Definitions

\[
\begin{array}{|c|c|}
\hline
A; \text{fun } x = E & (\lambda x. E, A) \\
\hline
\end{array}
\]

- The expression evaluates to a closure
 - The id and body in the closure come from the expression
 - The environment is the one in effect when the expression is evaluated
- This will be used to implement static scope
Evaluating Function Application

- How do we evaluate a function application expression of the form $E_1 \ E_2$?
 - Static scope
 - Call by value

- Strategy
 - Evaluate E_1, producing v_1
 - If v_1 is indeed a function (i.e. closure) then
 - Evaluate E_2, producing v_2
 - Set the parameter of closure v_1 equal to v_2
 - Evaluate the body under this binding of the parameter
 - Remember that non-parameter ids in the body must be interpreted using the closure!

Rule for Function Application

$A; E_1 \Rightarrow (\lambda x. E, A')$

$A; E_2 \Rightarrow v_2$

$A', x = v_2; E \Rightarrow v$

$A; E_1, E_2 \Rightarrow v$

- 1st hypothesis: E_1 evaluates to a closure
- 2nd hypothesis: E_2 produces a value (call by value!)
- 3rd hypothesis: Body E in modified closure environment produces a value
- This last value is the result of the application
Dynamic scoping

- The previous rule for functions implements static scoping, since it implements closures
- We could easily implement dynamic scoping

\[
\begin{align*}
A; E_1 &\Rightarrow (\lambda x.E, A') \\
A; E_2 &\Rightarrow v_2 \\
A, x=v_2; E &\Rightarrow v \\
A; E_1, E_2 &\Rightarrow v
\end{align*}
\]

- The only difference is to use the current environment \(A\), not the environment \(A'\)
 - Easy to see the origins of the dynamic scoping bug!

Practice

- Give a derivation that proves the following (where \(\bullet\) is the empty environment)
 - \(\bullet; \text{let } x = 5 \text{ in let } y = 6 \text{ in } x+y \Rightarrow 11\)
 - \(\bullet; \text{let } x = \text{let } x = 5 \text{ in } x+2 \text{ in } x+2 \Rightarrow 9\)
 - \(x=5; x+5 \Rightarrow 10\)
 - \(\bullet; \text{let } f = \text{fun } x = x+5 \text{ in } f 5 \Rightarrow 10\)
 - \(\bullet; \text{let } y = 5 \text{ in let } f = \text{fun } x = x+y \text{ in let } y = 6 \text{ in } f 5 \Rightarrow 10\)
- Using the dynamic scoping version of the function application rule, prove
 - \(\bullet; \text{let } y = 5 \text{ in let } f = \text{fun } x = x+y \text{ in let } y = 6 \text{ in } f 5 \Rightarrow 11\)