CMSC 651, Analysis of Algorithms, University of Maryland, Fall 2013
Homework (somewhat) related to Arora-Hazan-Kale, due at the beginning of class on December 12, 2013

Instructions: (i) Submit a written assignment, or email to Khoa by the deadline. (ii) Submit one writeup per group; please discuss within your group – other resources including the Web are not allowed for consultation. Write your solutions neatly.

Consider the following type of maximum-flow problem, where we do not have the usual assumption that there is only one source and only one sink. As usual, we are given a graph \(G = (V, E) \) (undirected, say), and a positive capacity \(c_e \) for every edge \(e \). In contrast with the type of flow-problem we studied in class, we are also given a set \(\mathcal{P} \) of paths in \(G \), and want to assign some non-negative flow value \(f_p \) to every path \(p \in \mathcal{P} \) in order to maximize the total amount of flow assigned, with the (familiar) constraint that for every edge \(e \in E \), the total flow, over all paths \(p \in \mathcal{P} \) that use \(e \), is at most \(c_e \).

(a) Formulate this problem as a linear program.

(b) We will now show that there is some universal constant \(K_0 > 0 \) such that for any given parameter \(\epsilon > 0 \), we can approximate this problem to within \((1 - K_0 \epsilon) \) by means of a fast algorithm, without resorting to LP as a black-box. We will assume that \(\epsilon \) is small enough: say, \(\epsilon \leq 0.1 \).

We will assume throughout that \(\min_{e \in E} c_e \geq 1 \); convince yourself that this is without loss of generality. Given a current flow-assignment \(f \), we will always let \(f(e) \) denote the total current flow on \(e \), i.e., \(\sum_{p \in \mathcal{P}} f_p \). (Note that \(\sum_{e \in E} f(e) = \sum_{p \in \mathcal{P}} (L(p) \cdot f_p) \), where \(L(p) \) denotes the number of edges in path \(p \in \mathcal{P} \).) Also, to avoid confusing edges \(e \) with \(e = 2.71 \cdots \), we will let \(\exp(x) \) denote \(e^x \). Our four-step iterative algorithm is as follows:

1. Initialize \(f_p := 0 \) for all \(p \in \mathcal{P} \).
2. \textbf{Repeat} until there exists some \(e \in E \) with \(f(e) \geq (c_e/\epsilon) \ln m \):
 2a. Let \(p \in \mathcal{P} \) be any path in \(\mathcal{P} \) that minimizes \(\sum_{e \in P} (1/c_e) \cdot \exp(f(e)/c_e) \); set \(f_p := f_p + \epsilon \).
3. Let \(\lambda := \max_{e \in E} f(e)/c_e \). \textbf{(Comment:} \(\lambda \) is the maximum ratio by which this flow \(f \) exceeds some edge-capacity; we will scale \(f \) down by \(\lambda \) in the next step in order to not exceed capacities.\textbf{)}
4. Let \(f_p := f_p/\lambda \) for all \(p \in \mathcal{P} \); return \(f \).

You will now prove that our algorithm returns a flow of value at least \((1 - K_0 \epsilon) \) times maximum, in a number of iterations that is not too large. For this, we will define the following key “potential function” \(\Phi(f) \) that depends on the current flow \(f \) (i.e., the current assignment of flow-values to the paths in \(\mathcal{P} \)):

\[
\Phi(f) = \ln \left(\sum_{e \in E} \alpha_e(f) \right).
\]

Observe that \(\max_e f(e)/c_e \) is always bounded by \(\Phi(f) \). Also note that as we keep adding to the flow, \(\Phi \) keeps increasing.

(i) How can finding \(p \) in step 2(a) be done efficiently? Just give a short high-level description.

(ii) Prove that there is some constant \(K_1 > 0 \) such that in any iteration where we add \(\epsilon \) to the flow on a path \(p \) to update \(f \) to a new flow \(f' \), the increase in \(\Phi \) is at most

\[
(1 + K_1 \epsilon) \cdot \frac{\sum_{e \in P} \alpha_e(f)/c_e}{\sum_{e \in E} \alpha_e(f)}.
\]

(Use the assumption “\(\min_{e \in E} c_e \geq 1 \)”, some basic algebra, as well as some simple bounds relating to the logarithmic and exponential functions (e.g., similar to some from Arora-Hazan-Kale) to simplify your calculations.)
(iii) Let f^* be some optimal flow for our problem; as usual, we of course do not know f^*, but we can use it in our analysis. Let $val(f^*)$ denote the optimal solution value: i.e., the value of

$$\sum_{p \in P} f_p^*.$$

You will now prove the following key bound: that in every iteration of the algorithm, Φ increases by at most $(1 + K_1 \epsilon) \cdot \epsilon / val(f^*)$. **Hint:** Let $q \in P$ be a random path, such that for any path $r \in P$, $Pr[q = r] = f_r^*/val(f^*)$. What is a good upper-bound on the expected value of $\sum_{e \in q} \alpha_e(f)/c_e$? (In finding this upper-bound, use the relationship between f_e^* and c_e.) Now note that a close relative of this term appears in (iv), and recall how p was chosen in step 2(a) of the algorithm.

(iv) Show (e.g., by induction) that our algorithm maintains the invariant

$$val(f^*) \cdot \frac{\Phi(f) - \ln m}{1 + K_1 \epsilon} \leq \sum_{r \in P} f_r.$$

(v) Use (iv) to prove that when the algorithm terminates, we have $\sum_{p \in P} f_p \geq (1 - K_0 \epsilon) \cdot val(f^*)$.

(vi) Prove that the number of iterations is at most $O(val(f^*) \cdot (\ln m)/\epsilon^2)$.

2