Instructions: (i) Submit a written assignment, or email to Khoa by the deadline. (ii) Submit one writeup per group; please discuss within your group – other resources including the Web are not allowed for consultation. Write your solutions neatly. (iii) When we refer to “Jeff Erickson’s chapter on Recursion” below, we mean the site http://compgeom.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/01-recursion.pdf

1. Consider the following decision problem: “Given a graph G and an integer k, is the size of the maximum clique in G exactly k?” (a) Show that this problem is NP-hard under Karp reductions. (b) If you believe this problem is in NP, then prove that it is in NP; if not, give an argument (informal is fine) suggesting why perhaps not.

2. Jeff Erickson’s chapter on Recursion, problem 11 (“Suppose we are given an array $A[1..n]$ with the special property ...”).

3. Jeff Erickson’s chapter on Recursion, problem 17 (“For this problem, a subtree of a binary tree ...”). See the page following this problem for an illustrative figure.

4. Separator theorems for graphs often lead to powerful divide-and-conquer algorithms. Recall that a graph is planar if it can be drawn in the plane with each edge being a line-segment joining its end-points, so that any two of these segments can meet - if at all - only at their end-points. The Separator Theorem for planar graphs, due to Lipton and Tarjan, says the following: given an n-vertex planar graph G, its vertices can be efficiently partitioned into three subsets A, B and C so that: (a) $n/3 \leq |A| \leq 2n/3$, (b) $n/3 \leq |B| \leq 2n/3$, (c) $|C| \leq O(\sqrt{n})$, and (d) no edge in G joins any vertex in A to any vertex in B. Thus, C is a “separator” that decouples A and B from each other, C is “small”, and neither A nor B is too large. This often helps us design the following type of generic divide-and-conquer algorithm for various planar-graph problems:

1. Find the separator (A, B, C): this is known to be possible in $O(n)$ time.

2. Recursively solve the problem on A, and then on B.

3. Run for some $f(n)$ amount of time to process C and the recursive solutions for A and B, and to output the final correct value for G.

(i) Write a recurrence for the running-time $T(n)$ of this generic algorithm. (The number of edges m in a planar graph is at most $3n - 6$, so we are not concerned with including m as a parameter for T.) Remember that $|A|$ and $|B|$ can take values between $n/3$ and $2n/3$.

(ii) Solve, with proof, your recurrence for $f(n) = O(n \log \log n)$. (One of the proof techniques that we discussed, will be useful.)

(iii) Solve, with proof, your recurrence for $f(n) = O(n^2)$.

5. Read and understand Chebyshev’s inequality from Chapter 3 of Welzl’s notes. It will be useful for this problem. In class, we saw that selecting the kth smallest element from an array of n elements can be done using an expected number of at most $4n$ comparisons. We do better now, but for simplicity we will focus on the case $k = n/2$. For the rest of this problem, “$o(1)$” will refer to any function of n that goes to zero as $n \to \infty$.

So suppose we want the $(n/2)$th smallest element, say m, from an array A of n elements; assume all elements of A are distinct. The basic intuition is this. In class, we picked one pivot at random. Instead, if we pick many more pivots (the multi-set S below), then the median of these is likely to be quite close to the targeted element m. Our algorithm is as follows:
(i) Let \(s = \lceil 4n^{3/4} \rceil \); choose a (multi-)set \(S \) of \(s \) elements at random from \(A \) (say, with replacement).

(ii) Sort \(S \), and use this sorted order to (easily) find the \((s/2 - \sqrt{n})^{th}\) smallest element in \(S \), say \(a \), and the \((s/2 + \sqrt{n})^{th}\) smallest element in \(S \), say \(b \).

(iii) Let \(L = \{x \in A : a \leq x \leq b\} \). (We prove below that \(L \) contains the desired element \(m \) with high probability.) Construct \(L \) by comparing each element \(x \in A \) with \(a \) and \(b \).

(iv) Sort \(L \), and use this sorted order to find \(m \) (easily).

We now analyze this algorithm:

(a) Use Chebyshev’s inequality to prove that \(\Pr[m \in L] = 1 - o(1) \). (Write the undesirable event “\(m < a \)” in a form suitable for the application of Chebyshev’s inequality. Similarly for “\(m > b \)”.)

(b) Use Chebyshev’s inequality to prove that \(\Pr[|L| \leq n^{3/4}] = 1 - o(1) \).

(c) Give the complete details of step (iv) of the algorithm.

(d) Use the above parts to prove that the algorithm is correct with probability \(1 - o(1) \), and that the number of comparisons is at most \((2 + o(1))n \).

(e) Show how step (iii) can be implemented so that the expected number of comparisons becomes at most \((1.5 + o(1))n \).