1. (20 points) Let \(P(n) \) be a predicate. Assume you have proven that \(P(9) \) holds and that \(P(n - 2) \rightarrow P(n + 3) \). What do you know? State your answer simply and clearly using modular arithmetic. No justification needed.
2. (20 points) We will use Mathematical Induction to prove that for $n \geq 2$

$$\sum_{j=2}^{n} \frac{1}{(j-1)j} = 1 - \frac{1}{n}$$

(a) Prove the base case.

(b) What is the Inductive Hypothesis?

(c) Show the Inductive Step.
3. (20 points) We will use Mathematical Induction to prove that for \(n \geq 1 \)

\[
\sum_{i=1}^{n} i(i!) = (n + 1)! - 1
\]

(a) Prove the base case.

(b) What is the Inductive Hypothesis?

(c) Show the Inductive Step.
4. (20 points) We will use Mathematical Induction to show that, for all integers $n \geq 1$, $8 | (3^{2^n} - 1)$.

(a) Prove the base case.

(b) What is the Inductive Hypothesis?

(c) Show the Inductive Step.
5. (20 points) We will use Mathematical Induction to show that, for all integers \(n \geq 2 \), if \(x_1, x_2, \ldots, x_n \) are real numbers strictly between 0 and 1 (i.e., \(0 < x_i < 1 \)), then

\[
(1 - x_1)(1 - x_2) \cdots (1 - x_n) > 1 - x_1 - x_2 - \cdots - x_n
\]

(a) Prove the base case.

(b) What is the Inductive Hypothesis?

(c) Show the Inductive Step.