Name & UID:

<table>
<thead>
<tr>
<th>Circle Your Section!</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0101 (10am: 3120, Ladan)</td>
<td>0102 (11am: 3120, Ladan)</td>
<td>0103 (Noon: 3120, Peter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0201 (2pm: 3120, Yi)</td>
<td>0202 (10am: 1121, Vikas)</td>
<td>0203 (11am: 1121, Vikas)</td>
<td>0204 (9am: 2117, Karthik)</td>
<td></td>
</tr>
<tr>
<td>0301 (9am: 3120, Huijing)</td>
<td>0302 (8am: 3120, Huijing)</td>
<td>0303 (1pm: 3120, Yi)</td>
<td>250H (10am: 2117, Peter)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>25</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMSC250 Homework 9 Due: Wednesday, December 3, 2014
1. (15 points) Consider the following sequence:

\[
\begin{align*}
 a_0 &= 1 \\
 a_1 &= 1 + 2a_0 = 3 \\
 a_2 &= 1 + 2a_0 + 2a_1 = 9 \\
 a_3 &= 1 + 2a_0 + 2a_1 + 2a_2 = 27 \\
 \vdots \\
 a_n &= 1 + \sum_{i=0}^{n-1} 2a_i
\end{align*}
\]

We will use **Strong Induction** to prove that \(a_n = 3^n \) for all \(n \geq 0 \).

(a) What is the Base Case?

Solution:
\[
\begin{align*}
 n &= 0 \\
 \text{Left side} &= 1 \\
 \text{Right side} &= 3^0 = 1
\end{align*}
\]

(b) What is the Inductive Hypothesis?

Solution: Assume that for all \(0 \leq k < n \), \(a_k = 3^k \).

(c) What is the Inductive Step?

Solution:
\[
\begin{align*}
 a_n &= 1 + \sum_{i=0}^{n-1} 2a_i \quad \text{by definition} \\
 &= 1 + 2\sum_{i=0}^{n-1} a_i \quad \text{by algebra} \\
 &= 1 + 2\sum_{i=0}^{n-1} 3^i \quad \text{by IH} \\
 &= 1 + 2\frac{3^n - 1}{3 - 1} \quad \text{sum of geometric series} \\
 &= 3^n \quad \text{by algebra}
\end{align*}
\]
2. (15 points) We will use Strong Induction to show that every positive integer \(n \) can be written as the sum of distinct powers of 2 (i.e., the integers \(2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8 \), etc.).

(a) What is the Base Case.

Solution: For \(n = 1 \): \(1 = 2^0 \).

(b) What is the Inductive Hypothesis.

Solution: Assume that for all \(1 \leq m < n \), \(m \) can be written as the sum of distinct powers of 2.

(c) What is the Inductive Step. [Hint: Consider the cases of when \(n \) is even and odd separately.]

Solution: If \(n \) is even then by the IH \(n/2 \) can be written as the sum of distinct powers of 2. Multiplying each of these powers by 2 gives \(n \) as the sum of distinct powers of 2. If \(n \) is odd then by the IH \((n - 1)/2 \) can be written as the sum of distinct powers of 2. Multiplying each of these powers by 2 and adding 1 = \(n^0 \) gives \(n \) as the sum of distinct powers of 2.
3. (15 points) Show that every positive integer n can be written as the sum of distinct powers of 2 in a unique way. [Hint: Do not use Mathematical Induction.]

Solution: Proof by Contradiction. Assume n can be written as the sum of distinct powers of 2 in two different ways. Find the smallest powers of 2 where the two ways disagree, say 2^a and 2^b. Assume, WLOG than $a < b$. Subtract all of powers of 2 that are smaller than 2^a from both ways, producing a (possibly smaller) number that is the sum of distinct powers of 2 in two different ways. Divide both numbers by 2^a producing a (possibly smaller) number that is the sum of distinct powers of 2 in two different ways. The way that had 2^a as a power now has $2^0 = 1$ as a power and is therefore odd, but the other way is even. Thus they cannot be equal, which is a contradiction.
4. (15 points) Assume that you guess that a formula for
\[\sum_{k=1}^{n} k2^k \]
has the form \(an2^n + b2^n + c \), where \(n \geq 1 \). We will use Constructive Mathematical Induction to derive a formula for the sum.

(a) What do you learn from the Base Case.

Solution: For \(n = 1 \)
\[
\sum_{k=1}^{n} k2^k = \sum_{k=1}^{1} k2^k = 1 \cdot 2^1 = 2 .
\]
\[an2^n + b2^n + c = a \cdot 1 \cdot 2^1 + b \cdot 2^1 + c = 2a + 2b + c . \]
So
\[2a + 2b + c = 2 . \]

(b) What is the Inductive Hypothesis?

Solution: Assume for \(n - 1 \)
\[
\sum_{k=1}^{n-1} k2^k = a(n-1)2^{n-1} + b2^{n-1} + c .
\]

(c) Show the Inductive Step.

Solution:
\[
\sum_{k=1}^{n} k2^k = \sum_{k=1}^{n-1} k2^k + n2^n
\]
= \[a(n-1)2^{n-1} + b2^{n-1} + c + n2^n \text{ by the IH} \]
= \[\frac{a}{2}(n-1)2^n + \frac{b}{2}2^n + c + n2^n \]
= \[\left(\frac{a}{2} + 1 \right)n2^n + \left(\frac{b-a}{2} \right)2^n + c \]
= \[an2^n + b2^n + c \text{ to make the Induction work} \]

(d) Derive the constants.

Solution: The first two terms above show that \(a = a/2 + 1 \) and \(b = (b-a)/2 \).
The first equation above implies \(a = 2 \), then the second equation above implies \(b = -2 \).
Using these two values with the base case implies \(c = 2 \). The final result is then
\[
\sum_{k=1}^{n} k2^k = 2n2^n - 2 \cdot 2^n + 2 = 2(n2^n - 2^n + 1) .
\]
5. (15 points) Consider the recurrence

\[r_n = 4r_{n-1} + r_{n-2} \]

where \(r_1 = 1 \) and \(r_2 = 3 \). We will use Constructive Mathematical Induction to derive an upper bound for \(r_n \). Assume that \(r_n \leq ab^n \). We would primarily like to upper bound \(b \) as tightly as possible, and secondarily upper bound \(a \) as tightly as possible.

(a) What do we learn from the base cases?

Solution:

\[
\begin{align*}
1 &= r_1 \leq ab^1 = ab \\
3 &= r_2 \leq ab^2
\end{align*}
\]

(b) What is the Inductive Hypothesis?

Solution: Assume that for \(k < n \), \(r_k \leq ab^k \).

(c) Show the Inductive Step.

Solution:

\[
\begin{align*}
 r_n &= 4r_{n-1} + r_{n-2} \\
 &\leq 4ab^{n-1} + ab^{n-2} \quad \text{by IH} \\
 &\leq ab^n \quad \text{to make the Induction work}
\end{align*}
\]

Dividing by \(ab^{n-2} \) and rearranging gives

\[
b^2 - 4b - 1 \geq 0
\]

(d) Derive the constants.

Solution: Solving for \(b \) gives

\[
b \geq 2 + \sqrt{5}.
\]

Substituting into the first base case (which dominates the second base case) gives

\[
a \geq \frac{1}{2 + \sqrt{5}} = \frac{1}{b}.
\]

Thus,

\[
r_n \leq (2 + \sqrt{5})^{n-1}.
\]
6. (25 points) A full ternary tree is a tree in which every node has exactly one or three children.

(a) Guess a equation relating the number of internal nodes and leaves in a full ternary tree.

Solution:

\[L = 2I + 1 \]

(b) Give a Non-Structural Mathematical Induction proof of the equation.

i. What is the Base Case?

Solution: One node: \(L = 1 \) and \(I = 0 \). Then \(2I + 1 = 2 \cdot 0 + 1 = 1 = L \).

ii. What is the Inductive Hypothesis?

Solution: Assume that for all trees with fewer than \(L \) leaves:

\[L' = 2I' + 1 \]

iii. What is the Inductive Step?

Solution: Let \(T \) be a tree with \(L \) leaves. Find an internal node for which all of its children are leaves. Remove the three children. The new tree has \(L - 2 \) leaves (having lost three but gained one) and \(I - 1 \) internal nodes (having lost one). By the IH, \(L - 2 = 2(I - 1) + 1 \), which implies \(L = 2I + 1 \).
(c) Give a recursive definition of a full trinary tree.

Solution: A *full trinary tree* is either a single node, called the root; or a single node, called the root, with three children, each of which is the root of a full trinary tree.

(d) Give a Structural Induction proof of the equation, using the definition from Part (c).

i. What is the Base Case:

Solution: One node: \(L = 1 \) and \(I = 0 \). Then \(2I + 1 = 2 \cdot 0 + 1 = 1 = L \).

ii. What is the Inductive Hypothesis?

Solution: Assume that for all trees with fewer than \(L \) leaves:

\[L' = 2I' + 1 \]

iii. What is the Inductive Step?

Solution: Consider a full trinary tree with more than one node. By the recursive definition it consists of a root with three children each of which is a full trinary tree. Call them \(T_A, T_B, \) and \(T_C \). Then \(L = L_A + L_B + L_C \), and \(I = I_A + I_B + I_C + 1 \). By the IH, \(L_A = 2I_A + 1 \), \(L_B = 2I_B + 1 \), and \(L_C = 2I_C + 1 \). Summing these last three equations gives:

\[
L_A + L_B + L_C = (2I_A + 1) + (2I_B + 1) + (2I_C + 1) = 2(I_A + I_B + I_C) + 3
\]

By substitution

\[
L = 2(I - 1) + 3 = 2I + 1.
\]