Problem 1 Run Dijkstra’s algorithm on the weighted graph below, using vertex $A$ as the source. Write the vertices in the order which they are marked and compute all distances at each step.

Solution Here is the vertices in the order which they are marked:

<table>
<thead>
<tr>
<th>step</th>
<th>vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
</tr>
</tbody>
</table>

All distances at each step:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>$\infty$</td>
<td>$\infty$</td>
<td>4</td>
<td>$\infty$</td>
<td>$\infty$</td>
<td>$\infty$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>$\infty$</td>
<td>$\infty$</td>
<td>4</td>
<td>15</td>
<td>$\infty$</td>
<td>$\infty$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>$\infty$</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>$\infty$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>15</td>
<td>24</td>
</tr>
</tbody>
</table>
Problem 2  (a) Consider the weighted graph below. Run Prim’s algorithm starting from vertex A. Write the edges in the order which they are added to the minimum spanning tree.

Solution  \((AE, BE, BC, CD, CG, FG, DH)\)

(b) Consider the weighted graph below. Run Kruskal’s algorithm starting from vertex A. Write the edges in the order which they are added to the minimum spanning tree.

Solution  \((CD, BE, AE, BC, FG, CG, DH)\)
Problem 3 (CLRS 24.3-2) Give an example of a directed graph with negative-weight edges for which Dijkstra’s algorithm produces incorrect answers. Write the vertices in the order which they are marked during Dijkstra’s algorithm.

Solution Run Dijkstra’s algorithm on the graph below, using vertex A as the source. Note that the weight of the actual shortest path from A to B is 2 and the weight of the actual shortest path from A to D is 6.

```
A 3  B 4  D
   ^  2  v
   C

-----|--------|---------|---------|---------|---------
 1   | {A}    | 0       | 3       | 4       | ∞       
 2   | {A, B} | 0       | 3       | 4       | 7       
 3   | {A, B, C} | 0   | 3       | 4       | 7       
 4   | {A, B, C, D} | 0   | 3       | 4       | 7       
```
Problem 4 (CLRS 24.3-4) Professor Gaedel has written a program he claims implements Dijskstra’s algorithm. The program produces the distance and the parent for each vertex \( v \) in the graph. Assume you are given the graph and the output of the professor’s program, i.e., the distance and the parent for each vertex \( v \). Design an \( O(n + m) \) algorithm to determine whether the distance and the parent attributes match those of some shortest-path tree. You may assume that all edge weights are non-negative.

Solution Assume array \( \text{dist} \) and array \( \text{parent} \) are the outputs of the professor’s program. We should check the following to check the correctness of the algorithm:

(a) For each edge from \( u \) to \( v \), we should have \( \text{dist}[u] + w_{u,v} \geq \text{dist}[v] \). We can check this property in \( O(m) \).

(b) For each vertex \( v \) except the source we should have \( \text{parent}[v] \neq v \) and \( \text{dist}[\text{parent}[v]] + w_{\text{parent}[v],v} = \text{dist}[v] \) and for the source \( (s) \) we should have \( \text{parent}[s] = \text{null} \). We can check this property in \( O(n) \).

(c) \( \text{dist}[s] = 0 \) where \( s \) is the source. We can check this property in \( O(1) \).

(d) We have to check whether array \( \text{parent} \) represents a spanning tree or not. In order to check this property we can run a DFS algorithm on the shortest-path tree (stored in array \( \text{parent} \)) from source \( s \). At the end of the DFS algorithm all vertices should be visited. Note that we can check this property by one DFS algorithm on the shortest-path tree with at most \( n - 1 \) edges in \( O(n) \).
Problem 5 (CLRS 22.3-7) Let $G = (V, E)$ be a weighted graph and $T$ be its shortest-path tree from source $s$. Assume all weights in $G$ are increased by the same amount, i.e., $\forall e \in E, w'_e = w_e + c$. Is tree $T$ still the shortest-path tree (from source $s$) of the modified graph? If yes, prove the statement. Otherwise, give a counter example.

Solution The answer is no and here is a counter example. The shortest-path tree of this graph has edges $(A, B)$ and $(B, C)$.

For $c = 2$ the new graph would be the following. The shortest-path tree of this graph has edges $(A, B)$ and $(A, C)$.
Problem 6 Bellman-Ford’s algorithm computes all shortest paths from a single source $s$ when the input graph has no negative-weight cycle (The weight of a cycle $C = (v_0, v_1, \cdots, v_t)$ is defined as $w_{v_0v_0} + \sum_{i=1}^{t} w_{v_{i+1},v_i}$). This algorithm works when the input graph has non-negative weights. Here is the pseudo-code for Bellman-Ford’s algorithm:

Algorithm 1 Bellman-Ford($s$)

1: for $i \leftarrow 1$ to $n$ do
2: \hspace{1cm} $dist[i] = \infty$
3: end for
4: $dist[s] = 0$
5: for $i \leftarrow 1$ to $n - 1$ do
6: \hspace{1cm} for all edges such as $(u, v)$ do
7: \hspace{2cm} if $dist[v] > dist[u] + w_{uv}$ then
8: \hspace{3cm} $dist[v] = dist[u] + w_{uv}$
9: \hspace{3cm} $parent[v] = u$
10: \hspace{2cm} end if
11: end for
12: end for

(a) What is the running time of the algorithm?
(b) Consider an arbitrary vertex $v$ and let $s = v_0, v_1, \cdots, v_k = v$ be the shortest path from $s$ to $v$. Define $f(v) = k$ i.e, the length of the shortest path from $s$ to $v$. What is $f(s)$?
(c) Prove $\forall v, 0 \leq f(v) \leq n - 1$.
(d) Prove by induction on $f(v)$ that the algorithm will compute the shortest path for vertex $v$ when $i = f(v)$ (line 5-12 of the pseudo-code)?
(e) Give an example of a graph with a negative-weight cycle for which Bellman-Ford’s algorithm produces incorrect answers.

Solution Look at Section 24.1 of the book by Cormen et al.
Problem 7  Let $D$ be the shortest path matrix of weighted graph $G$. It means $D[u, v]$ is the length of the shortest path from vertex $u$ to vertex $v$, for every two vertices $u$ and $v$. Graph $G$ and matrix $D$ are given. Assume the weight of an edge $e$ is decreased from $w_e$ to $w'_e$. Design an algorithm to update matrix $D$ with respect to this change. The running time of your algorithm should be $O(n^2)$. Describe all details and write a pseudo-code for your algorithm.

Solution  Assume graph is undirected. Let $e = a, b$. For every pair of vertices $u$ and $v$ let $D[u, v], D'[u, v]$ be the old and new entries respectively. Now we have two possibilities: either the new shortest path from $i$ to $j$ can pass through $e$, or not. Therefore, we have:

$$D'[u, v] = \min\{D[u, v], D[u, a] + w'_e + D[b, v], D[u, b] + w'_e + D[a, v]\}$$

Since we can update each entry in constant time, the whole algorithm runs in $O(n^2)$ time.

Note: If graph is directed and $e = (a, b)$ then

$$D'[u, v] = \min\{D[u, v], D[u, a] + w'_e + D[b, v]\}$$
Problem 8 Let \( G = (V, E) \) be a connected weighted graph, and let \( T \) be a minimum spanning tree of \( G \). Graph \( G \) and tree \( T \) are given. Assume the cost of one edge \( e \) in \( G \) is decreased from \( w_e \) to \( w'_e \). Design an algorithm to find a minimum spanning tree in the modified graph. The running time of your algorithm should be \( O(n) \). Describe all details and write a pseudo-code for your algorithm.

Solution Let \( e = (u, v) \). If \( e \in T \) then \( T \) would be a minimum spanning tree of the new graph. Assume \( e \notin T \) and add \( e \) to \( T \). Graph \( T + \{e\} \) has a unique cycle \( C \). Find cycle \( C \) and let \( e' \) be the edge with the maximum weight in cycle \( C \). Print \( T + \{e\} - \{e'\} \) as a minimum spanning tree for the new graph.

Now, we have to design an \( O(n) \) algorithm for finding cycle \( C \). Consider spanning tree \( T \). Run DFS algorithm on spanning tree \( T \) starting from \( u \) and find the unique path \( P \) from \( u \) to \( v \). Then cycle \( C \) would be \( P + e \). Since spanning tree \( T \) has \( n - 1 \) edges the DFS would run in \( O(n) \). Here is the pseudo-code for finding all edges of cycle \( C \):

Algorithm 2 Find-Cycle \((T, u, v)\)
1: DFS \((T, u)\)
2: \( P = \text{Find-Path}(u, v) \)
3: \( C = P + (u, v) \).
4: return \( C \)

Algorithm 3 DFS \((T, x)\)
1: \( \text{color}[x] = \text{gray} \)
2: for all neighbors of \( x \) in \( T \) such as \( y \) do
3: if \( \text{color}[y] = \text{white} \) then
4: DFS \((T, y)\)
5: \( x = \text{parent}[y] \)
6: end if
7: end for

Algorithm 4 Find-Path \((T, u, v)\)
1: \( x = v \)
2: while \( x \neq u \) do
3: \( P = P + (x, \text{parent}[x]) \)
4: \( x = \text{parent}[x] \)
5: end while
6: return \( P \)