Problem 1: Palindromes

Let \(S = (s_1 s_2 \cdots s_n) \) be the input sequence. Define \(A[i, j] \) as the number of ways one can remove a few symbols (maybe 0) from sequence \((s_i \cdots s_j)\) such that the rest of sequence \((s_i \cdots s_j)\) becomes a palindrome. Write a dynamic program to compute \(A[i, j] \) based on \(A[i + 1, j] \), \(A[i, j - 1] \), and \(A[i + 1, j - 1] \).

Problem 2: Tree

For each vertex \(v \), compute the final answer to query “find \(v \)” and store it in \(result[v] \). You can fill array \(result \) by one DFS.

- For each query “find \(v \)”, you can output \(result[v] \).
- For each query “change \(v \) \(w \)”, you should update \(result[u] \) for each vertex \(u \) in the subtree rooted at \(v \) (including \(v \)). Design an algorithm for updating array \(result \) by one DFS from vertex \(v \). Note that there at most 100 queries of this type.

Problem 3: Increasing Shortest Path

Sort all edges regarding their weights and let \((e_1, e_2, \cdots, e_m)\) be the result, i.e., \(w_{e_1} \leq w_{e_2} \leq \cdots \leq w_{e_m} \).

Now, consider a query which is represented by \(A \) and \(B \). This means you need to find the shortest path (the path with minimum sum of weights of its edges) which goes from node \(A \) to node \(B \) such that the weights of the edges in that path are in increasing order along the path.

Let \(B[i] \) be the minimum sum of weights for a path starting at node \(A \) and ending at edge \(e_i \) which satisfies the given constraints. Write a dynamic program for computing \(B[1], B[2], \cdots, B[m] \).

Given array \(B \), what would be the final answer?