CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph Definitions

- **Node**
 - Element of graph
 - State
 - List of adjacent/neighbor/successor nodes

- **Edge**
 - Connection between two nodes
 - State
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges
- Undirected graph
 - Undirected edges
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge
Graph Definitions

• Path
 • Sequence of nodes n_1, n_2, \ldots, n_k
 • Edge exists between each pair of nodes n_i, n_{i+1}
• Example
 • A, B, C is a path
 • A, E, D is not a path
Graph Definitions

• Cycle
 • Path that ends back at starting node
 • Example
 • A, E, A
 • A, B, C, D, E, A

• Simple path
 • No cycles in path

• Acyclic graph
 • No cycles in graph
 • What is an example?
Graph Definitions

• Connected Graph
 • Every node in the graph is reachable from every other node in the graph

• Unconnected graph
 • Graph that has several disjoint components
Graph Operations

- Traversal (search)
 - Visit each node in graph exactly once
 - Usually perform computation at each node
- Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Traversals Orders

• Order of successors
 • For tree
 • Can order children nodes from left to right
 • For graph
 • Left to right doesn’t make much sense
 • Each node just has a set of successors and predecessors; there is no order among edges

• For breadth first search
 • Visit all nodes at distance k from starting point
 • Before visiting any nodes at (minimum) distance $k+1$ from starting point
Breadth-first Search (BFS)

• Approach
 • Visit all neighbors of node first
 • View as series of expanding circles
 • Keep list of nodes to visit in queue

• Example traversal
 1. n
 2. a, c, b
 3. e, g, h, i, j
 4. d, f
Breadth-first Tree Traversal

- Example traversals starting from 1

1. Left to right
2. Right to left
3. Random
Depth-first Search (DFS)

- **Approach**
 - Visit all nodes on path first
 - **Backtrack** when path ends
 - Keep list of nodes to visit in a stack
- Similar to process in maze without exit
- **Example traversal**
 1. N
 2. A
 3. B, C, D, ...
 4. F...
Depth-first Tree Traversal

- Example traversals from 1 (preorder)

1. Left to right:
 - Depth-first traversal sequence: 1, 2, 3, 4, 5, 6, 7

2. Right to left:
 - Depth-first traversal sequence: 1, 4, 5, 6, 7, 2, 3

3. Random: (A random traversal for demonstration)
 - Depth-first traversal sequence: 1, 2, 3, 4, 5, 6, 7

Images of the trees with the assigned traversal order are shown for each case.
Traversals Algorithms

- **Issue**
 - How to avoid revisiting nodes
 - Infinite loop if cycles present

- **Approaches**
 - Record set of visited nodes
 - Mark nodes as visited
Traversing – Avoid Revisiting Nodes

- Record set of visited nodes
 - Initialize \{ Visited \} to empty set
 - Add to \{ Visited \} as nodes are visited
 - Skip nodes already in \{ Visited \}

\[
V = \emptyset \quad \Rightarrow \quad V = \{ 1 \} \quad \Rightarrow \quad V = \{ 1, 2 \}
\]
Traversal – Avoid Revisiting Nodes

- Mark nodes as visited
 - Initialize tag on all nodes (to False)
 - Set tag (to True) as node is visited
 - Skip nodes with tag = True
Traversal Algorithm Using Sets

\{ \text{Visited} \} = \emptyset
\{ \text{Discovered} \} = \{ \text{1st node} \}

\text{while (} \{ \text{Discovered} \} \neq \emptyset \text{)}

\quad \text{take node } X \text{ out of } \{ \text{Discovered} \}

\quad \text{if } X \text{ not in } \{ \text{Visited} \}

\quad \quad \text{add } X \text{ to } \{ \text{Visited} \}

\quad \quad \text{for each successor } Y \text{ of } X

\quad \quad \quad \text{if (} Y \text{ is not in } \{ \text{Visited} \} \text{)}

\quad \quad \quad \quad \text{add } Y \text{ to } \{ \text{Discovered} \}
Traversing Algorithm Using Tags

for all nodes X
 set X.tag = False
{ Discovered } = { 1st node }
while ({ Discovered } ≠ ∅)
 take node X out of { Discovered }
 if (X.tag == False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag == False)
 add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of { Discovered } key
- Implement { Discovered } as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement { Discovered } as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X
 X.tag = False

put 1st node in Queue

while (Queue not empty)
 take node X out of Queue
 if (X.tag == False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag == False)
 put Y in Queue
DFS Traversal Algorithm

for all nodes X

$X.tag = False$

put 1st node in Stack

while (Stack not empty)

pop X off Stack

if (X.tag == False)

set X.tag = True

for each successor Y of X

if (Y.tag == False)

push Y onto Stack
Example

- Let’s do a BFS/DFS using the following graph (start vertex C)

- Which Java class can help us implement BFS/DFS?
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

- Approach
 Visit (X)
 for each successor Y of X
 Visit (Y)

- Implicit call stack & backtracking
 - Results in depth-first traversal
Recursive DFS Algorithm

Traverse()
 for all nodes X
 set X.tag = False
 Visit (1st node)
 Visit (X)
 set X.tag = True
 for each successor Y of X
 if (Y.tag == False)
 Visit (Y)