IMPORTANT

• Make sure you check your e-mails every day and the messages we post on the class announcements. It is your responsibility to check them so you are aware of important information/deadlines
• Final exam information is available on the class web page
• In the past, students have missed the final exam because they have the wrong date. Double-check now the current date and verify it with a classmate
• Please complete course evaluations 😊
• Save your projects for future reference. CVS repositories will be deleted after the semester is over.
• Disconnect your projects from CVS (right-click on project, Team→Disconnect) and discard your CVS location (go to the CVS Perspective, right-click on repository link, Discard location) after finishing the last project (otherwise you may get error messages regarding the nonexistent repository connection once we remove the CVS repositories)
 • You should always try to use a different workspace location in the future
• FYI: For future advising sessions
 • http://www.cs.umd.edu/~nelson/advising/
FYI: BitSet Class

- Implements a set of bits where the bits of the set are indexed by nonnegative integers.
- We could have used it for a Sudoku implementation
- Methods
 - BitSet() – New bit set
 - BitSet(int nbits) – Bit set large enough to represent bits with indices from 0 through nbits – 1
 - and(BitSet set) – Performs logical and between the current object and the set parameter (current object is updated with the result)
 - or(BitSet set) – Performs logical or between the current object and the set parameter (current object is updated with the result)
 - cardinality() – Returns number of bits set to 1
 - flip(int bitIndex) – Sets the bit at the specified index
 - get(int bitIndex) – Returns true if the bit at bitIndex is set; false otherwise
 - length() – Index of the highest set bit + 1. It returns zero if the BitSet contains no bits set.
 - size() – Number of bits space used by the BitSet to represent bit values
 - toString() – For every bit set, the decimal representation of that index is included in the result.
Review

• Note: this is NOT a complete list of the topics for the final. See the final exam information posted on the class web page for complete information

• Object-Oriented Principles
 • Abstraction
 • How to design system based on provided descriptions

• Algorithmic Complexity
 • Why we use it?
 • What is the alternative?
 • Examples

• Linear Data Structures
 • Traditional linked list (head)
 • Project linked list (head and tail)
 • Example: A method returning a list
Review

• **Note:** this is **NOT** a complete list of the topics for the final. See the final exam information posted on the class web page for complete information

• **Sets/Map**
 • Different types
 • Examples

• **Trees**
 • Traditional vs. Polymorphic
 • Examples

• **Software Development**
 • Kinds of testing
 • Software Process Models
 • Software Lifecycle
 • Architectures

• **Multithreading**
 • How to define threaded solutions
 • How to avoid data races
Review

- **Note:** this is NOT a complete list of the topics for the final. See the final exam information posted on the class web page for complete information

- **Graphs**
 - BFS/DFS
 - Dijkstra's

- **Sorting**
 - Performance of each algorithm

- **Algorithm Strategies/Design Patterns**

- **You don’t need to know UML**
 - But you can use it to provide answers if you want.
 - Practice material may have UML exercises. Don’t write the UML, but write the solution to any design problem

- **Java**
 - Abstract Classes vs. Interfaces
 - Comparable, Comparator
 - Etc.
Questions about Final Exam Material

• Any questions?