CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space
- Measuring efficiency
 - Benchmarking
 - Approach
 - Pick some desired inputs
 - Actually run implementation of algorithm
 - Measure time & space needed
 - Asymptotic analysis
Benchmarking

- **Advantages**
 - Precise information for given configuration
 - Implementation, hardware, inputs

- **Disadvantages**
 - Affected by configuration
 - Data sets (often too small)
 - Dataset that was the right size 3 years ago is likely too small now
 - Hardware
 - Software
 - Affected by special cases (biased inputs)
 - Does not measure intrinsic efficiency
Asymptotic Analysis

• Approach
 • Mathematically analyze efficiency
 • Calculate time as function of input size n
 • $T \approx O(f(n))$
 • T is on the order of $f(n)$
 • “Big O” notation

• Advantages
 • Measures intrinsic efficiency
 • Dominates efficiency for large input sizes
 • Programming language, compiler, processor irrelevant
Search Comparison

- For number between 1…100
 - Simple algorithm = 50 steps
 - Binary search algorithm = \(\log_2(n) = 7 \) steps
- For number between 1…100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = \(\log_2(n) \) (about 17 steps)
- Binary search is much more efficient!
Asymptotic Complexity

- Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{n}{2})</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(n/2 \) and \(4n+3 \) behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size
- For large values of \(n \)
 - \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches exactly 2
- Both are \(O(n) \) programs
- Example: \(2n + 100 \rightarrow O(n) \) (next slide)
Complexity Example

- $2n + 100 \Rightarrow O(n)$
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • \(n^2 \) and \(2n^2 + 8 \) behave similarly
 • Run time roughly increases by 4 as input size doubles
 • Run time increases \textit{quadratically} with input size
• For large values of \(n \)
 • \(\text{Time}(2n) / \text{Time}(n) \) approaches 4
• Both are \(O(n^2) \) programs
• \textbf{Example}: \(\frac{1}{2} n^2 + 100 \ n \rightarrow O(n^2) \) (next slide)
Complexity Examples

- $\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2)$
Asymptotic Complexity

- Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log$_2$(n)</td>
<td>5 * log$_2$(n) + 3</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>48</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(\log_2(n) \) and \(5 \times \log_2(n) + 3 \) behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size
- For large values of \(n \)
 - \(\text{Time}(2n) - \text{Time}(n) \) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 \(\log_a N = (\log_b N) / (\log_b a) \)
 - Both are \(O(\log(n)) \) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs
Formal Definition of Big-O

- Function \(f(n) \) is \(O(g(n)) \) if
 - For some positive constants \(M, N_0 \)
 - \(M \times g(n) \geq f(n) \), for all \(n \geq N_0 \)
- Intuitively
 - For some coefficient \(M \) & all data sizes \(\geq N_0 \)
 - \(M \times g(n) \) is always greater than \(f(n) \)
Big-O Examples

- $2n^2 + 10n + 1000 \Rightarrow O(n^2)$
 - Select $M = 4$, $N_0 = 100$
 - For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
 - Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

• For large values of n
 • Any $O(\log(n))$ algorithm is faster than $O(n)$
 • Any $O(n)$ algorithm is faster than $O(n^2)$
• Asymptotic complexity is a fundamental measure of efficiency
• Big-O results only valid for big values of n
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>$O(n^n)$</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size n, constant $k > 1$
Complexity Category Example

The diagram illustrates the number of solution steps required for different problem sizes, categorized by complexity functions: 2^n, n^2, $n\log(n)$, n, and $\log(n)$. The x-axis represents the problem size, while the y-axis shows the number of solution steps.

- **2^n** (purple asterisks) increases exponentially with problem size, rapidly becoming unsustainable for large values.
- **n^2** (blue crosses) grows quadratically, making it feasible for moderate problem sizes.
- **$n\log(n)$** (red triangles) grows logarithmically, suitable for larger problem sizes.
- **n** (green squares) is linear, manageable for small and medium problem sizes.
- **$\log(n)$** (black diamonds) grows very slowly, ideal for extremely large problem sizes.

Understanding these categories helps in selecting algorithms or methods that are efficient for specific problem sizes.
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>3</td>
<td>n^2</td>
</tr>
<tr>
<td>4</td>
<td>$n \log(n)$</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>$\log(n)$</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing the relationship between problem size and solution steps for different complexity categories.
Calculating Asymptotic Complexity

• As n increases
 • Highest complexity term dominates
 • Can ignore lower complexity terms

• Examples
 • $2n + 100$ $\Rightarrow O(n)$
 • $10n + n\log(n)$ $\Rightarrow O(n\log(n))$
 • $100n + \frac{1}{2}n^2$ $\Rightarrow O(n^2)$
 • $100n^2 + n^3$ $\Rightarrow O(n^3)$
 • $1/1002^n + 100n^4$ $\Rightarrow O(2^n)$
Types of Case Analysis

• Can analyze different types (cases) of algorithm behavior

• Types of analysis
 • Best case
 • Worst case
 • Average case
 • Amortized
Best/Worst Case Analysis

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example \(\Rightarrow\) Find item in first place checked

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example \(\Rightarrow\) Find item in last place checked
QuickSort Example

- **QuickSort**
 - One of the fastest comparison sorts
 - Frequently used in practice
- **QuickSort algorithm**
 - Pick *pivot* value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists
- **QuickSort properties**
 - Average case = $O(n\log(n))$
 - Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list
- **Can avoid worst-case behavior**
 - Select random pivot value
Average Case Analysis

- Average case analysis
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches: average case, expected case

- Average case
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- Expected case
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

- **Approach**
 - Applies to worst-case *sequences* of operations
 - Finds average running time per operation
- **Example**
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps
- **Assumptions**
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability
- By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)