CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity II

Department of Computer Science
University of Maryland, College Park
Analyzing Algorithms

• Goal
 • Find asymptotic complexity of algorithm

• Approach
 • Ignore less frequently executed parts of algorithm
 • Find critical section of algorithm
 • Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time
- Characteristics
 - Operation central to functioning of program
 - Usually contained inside deeply nested loops
- Sources
 - Loops
 - Recursion
Critical Section Example 1

• Code (for input size n)
 1. A
 2. for (int $i = 0; i < n; i++$) {
 3. B
 4. }
 5. C

• Code execution
 • A \Rightarrow once
 • B \Rightarrow n times
 • C \Rightarrow once

• Time $\Rightarrow 1 + n + 1 = O(n)$
Critical Section Example 2

- Code (for input size \(n \))
 1. A
 2. for (int i = 0; i < n; i++) {
 3. B
 4. for (int j = 0; j < n; j++) {
 5. C
 6. }
 7. }
 8. D

- Code execution
 - A \(\Rightarrow \) once
 - B \(\Rightarrow \) \(n \) times
 - C \(\Rightarrow \) \(n^2 \) times
 - D \(\Rightarrow \) once

- Time \(\Rightarrow \) \(1 + n + n^2 + 1 = O(n^2) \)
Critical Section Example 3

- Code (for input size n)
 1. A
 2. for (int $i = 0; i < n; i++$) {
 3. for (int $j = i+1; j < n; j++$) {
 4. B
 5. }
 6. }

- Code execution
 - A \Rightarrow once
 - B $\Rightarrow \frac{1}{2} n (n-1)$ times

- Time $\Rightarrow 1 + \frac{1}{2} n^2 - \frac{1}{2} n = O(n^2)$
Critical Section Example 4

• Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++) {
 3. for (int j = 0; j < 10000; j++) {
 4. B
 5. }
 6. }

• Code execution
 • A \Rightarrow once
 • B \Rightarrow 10000 n times

• Time $\Rightarrow 1 + 10000 \times n = O(n)$
Critical Section Example 5

- Code (for input size n)
 1. for (int $i = 0; i < n/2; i++$)
 2. for (int $j = 0; j < n/2; j++$)
 3. A
 4. for (int $i = 0; i < n; i++$)
 5. for (int $j = 0; j < n; j++$)
 6. B

- Code execution
 - $A \Rightarrow n^2/4$ times
 - $B \Rightarrow n^2$ times

- Time $\Rightarrow n^2/4 + n^2 = O(n^2)$
Critical Section Example 6

• Code (for input size n)
 1. $i = 1$
 2. while ($i < n$) {
 3. A
 4. $i = 2 \times i$
 5. B

• Code execution
 • $i = 1 \Rightarrow 1$ times
 • $A \Rightarrow \log(n)$ times
 • $B \Rightarrow 1$ times

• Time $\Rightarrow 1 + \log(n) + 1 = O(\log(n))$
Critical Section Example 7 (Recursion)

- Code (for input size n)
 1. DoWork (int n)
 2. if (n == 1)
 3. A
 4. else {
 5. DoWork(n/2)
 6. DoWork(n/2)
 7. }

- Code execution
 - A ⇒ 1 times
 - DoWork(n/2) ⇒ 2 times

- Time(1) ⇒ 1
 - Time(n) = 2 × Time(n/2) + 1
Comparing Complexity

- Compare two algorithms
 - \(f(n), g(n) \)
- Determine which increases at faster rate
 - As problem size \(n \) increases
- Can compare ratio
 - If \(\infty \), \(f() \) is larger
 - If 0, \(g() \) is larger
 - If constant, then same complexity

Example (\(\log(n) \) vs. \(n^{1/2} \))
Additional Complexity Measures

- Upper bound
 - Big-O \(\Rightarrow O(\ldots) \)
 - Represents upper bound on # steps
- Lower bound
 - Big-Omega \(\Rightarrow \Omega(\ldots) \)
 - Represents lower bound on # steps
2D Matrix Multiplication Example

• Problem
 • C = A * B

• Lower bound
 • \(\Omega(n^2) \) Required to examine 2D matrix

• Upper bounds
 • \(O(n^3) \) Basic algorithm
 • \(O(n^{2.807}) \) Strassen’s algorithm (1969)
 • \(O(n^{2.376}) \) Coppersmith & Winograd (1987)

• Improvements still possible (open problem)
 • Since upper & lower bounds do not match