Recursive Algorithms

Department of Computer Science
University of Maryland, College Park
Recursion

- Recursion is a strategy for solving problems
 - A procedure that calls itself

Approach

- If (problem instance is simple / trivial)
 - Solve it directly
- Else
 - Simplify problem instance into smaller instance(s) of the original problem
 - Solve smaller instance using same algorithm
 - Combine solution(s) to solve original problem
Example – Factorial

- Factorial definition
 - \(n! = n \times (n-1) \times (n-2) \times (n-3) \times \ldots \times 3 \times 2 \times 1 \)
 - \(0! = 1 \)

- To calculate factorial of \(n \)
 - Base case
 - If \(n = 0 \), return 1
 - Recursive step
 - Calculate the factorial of \(n-1 \)
 - Return \(n \times (\text{the factorial of } n-1) \)

- Code
  ```c
  int fact ( int n ) {
    if ( n == 0 )
      return 1; // base case
    return n * fact(n-1); // recursive step
  }
  ```
Properties

- Recursion relies on the call stack
 - State of current procedure is saved when procedure is recursively invoked
 - Every procedure invocation gets own stack space
 - Let’s draw a diagram for factorial(4)
- Any problem solvable with recursion may be solved with iteration (and vice versa)
 - Use iteration with explicit stack to store state
 - Algorithm may be simpler for one approach
Recursion vs. Iteration

- Recursive algorithm

```c
int fact (int n) {
    if (n == 0) return 1;
    return n * fact(n-1);
}
```

- Iterative algorithm

```c
int fact (int n) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
        res = res * i;
    }
    return res;
}
```

Recursive algorithm is closer to factorial definition
Examples

• Find → To find an element in an array
 • Base case
 • If array is empty, return false
 • Recursive step
 • If 1st element of array is given value, return true
 • Skip 1st element and recur on remainder of array

• Count Instances → To count # of elements in an array
 • Base case
 • If array is empty, return 0
 • Recursive step
 • Skip 1st element and recur on remainder of array
 • Add 1 to result

• Some recursive problems require an auxiliary function
 • Auxiliary function → the one that actually is recursive

• Example: ArrayExamples.java
Examples

• Let’s look at recursive solutions for operations on a linked list
 • Find
 • Count
 • Print list
 • Print list in reverse

• Notice we can use the ?: operator for the implementation of some of these methods
Recursion vs. Iteration

• **Iterative algorithms**
 • May be more efficient
 • No additional function calls
 • Run faster, use less memory

• **Recursive algorithms**
 • Higher overhead
 • Time to perform function call
 • Memory for call stack
 • May be simpler algorithm
 • Easier to understand, debug, maintain
 • Natural for backtracking searches
 • Suited for recursive data structures
 • Trees, graphs…
Making Recursion Work

• Designing a correct recursive algorithm

• Verify
 • Base case(s) is
 • Recognized correctly
 • Solved correctly
 • Recursive case
 • Solves 1 or more simpler subproblems
 • Can calculate solution from solution(s) to subproblems
 • Makes progress toward the base case

• Uses principle of proof by induction
Proof By Induction

• Mathematical technique
• A theorem is true for all $n \geq 0$ if
 • Base case
 • Prove theorem is true for $n = 0$, and
 • Inductive step
 • Assume theorem is true for n (inductive hypothesis)
 • Prove theorem must be true for $n+1$
Types of Recursion

- Tail recursion
 - Has a recursive call as final action
 - Example

    ```
    int factorial(int n, int partialResult) {
        if (n == 0)
            return partialResult;
        return factorial(n-1, n*partialResult);
    }
    ```

 - Can easily transform to iteration (loop)
 - In functional languages tail call elimination is often guaranteed by the language
Types of Recursion

• Non-tail recursion
 • Example
    ```java
    int nontail( int n ) {
        ...
        x = nontail(n-1) ;
        y = nontail(n-2) ;
        z = x + y;
        return z;
    }
    • Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

- Infinite recursion
  - If recursion not applied to simpler problem

```c
int bad (int n) {
 if (n == 0)
 return 1;
 return bad(n);
}
```

- Infinite loop?
- Eventually halt when runs out of (stack) memory
  - Stack overflow
Possible Problems – Efficiency

- May perform excessive computation
  - If recomputing solutions for subproblems
- Example
  - Fibonacci numbers
    - \( \text{fibonacci}(0) = 0 \)
    - \( \text{fibonacci}(1) = 1 \)
    - \( \text{fibonacci}(n) = \text{fibonacci}(n-1) + \text{fibonacci}(n-2) \)
- Example: Fibonacci.java
Possible Problems – Efficiency

- Recursive algorithm to calculate fibonacci(n)
  - If n is 0 or 1, return 1
  - Else compute fibonacci(n-1) and fibonacci(n-2)
  - Return their sum
- Simple algorithm $\Rightarrow$ exponential time $O(2^n)$
  - Computes fibonacci(1) $2^n$ times
- Can solve efficiently using
  - Iteration
  - Dynamic programming
- Will examine different algorithm strategies later…
Examples of Recursive Algorithms

- Towers of Hanoi
- Binary search
- Quicksort
- N-queens
- Fractals
Example – Towers of Hanoi

- Problem
  - Move stack of disks between pegs
  - Can only move top disk in stack
  - Only allowed to place disk on top of larger disk
Example – Towers of Hanoi

• To move a stack of \( n \) disks from peg X to Y
  • Base case
    • If \( n = 1 \), move disk from X to Y
  • Recursive step
    • Move top \( n-1 \) disks from X to 3\(^{rd} \) peg
    • Move bottom disk from X to Y
    • Move top \( n-1 \) disks from 3\(^{rd} \) peg to Y

Iterative algorithm would take much longer to describe!
N-Queens

• Goal
  • Place queens on a board such that every row and column contains one queen, but no queen can attack another queen

• Recursive approach
  • To place queens on NxN board
  • Assume you’ve already placed K queens
Fractals

• Goal
  • Construct shapes using a simple recursive definition with a natural appearance

• Properties
  • Appears similar at all scales of magnification
    • Therefore “infinitely complex”
  • Not easily described in Euclidean geometry