CMSC 430
Introduction to Compilers
Fall 2015

Lexing and Parsing
Overview

- Compilers are roughly divided into two parts
 - Front-end — deals with surface syntax of the language
 - Back-end — analysis and code generation of the output of the front-end

- Lexing and Parsing translate source code into form more amenable for analysis and code generation

- Front-end also may include certain kinds of semantic analysis, such as symbol table construction, type checking, type inference, etc.
Lexing vs. Parsing

• Language grammars usually split into two levels
 ▪ Tokens — the “words” that make up “parts of speech”
 - Ex: Identifier \[a-zA-Z_]+\]
 - Ex: Number \[0-9]+\]
 ▪ Programs, types, statements, expressions, declarations, definitions, etc — the “phrases” of the language
 - Ex: if (expr) expr;
 - Ex: def id(id, ..., id) expr end

• Tokens are identified by the lexer
 ▪ Regular expressions

• Everything else is done by the parser
 ▪ Uses grammar in which tokens are primitives
 ▪ Implementations can look inside tokens where needed
Lexing vs. Parsing (cont’d)

- Lexing and parsing often produce abstract syntax tree as a result
 - For efficiency, some compilers go further, and directly generate intermediate representations

- Why separate lexing and parsing from the rest of the compiler?
- Why separate lexing and parsing from each other?
Parsing theory

• Goal of parsing: Discovering a parse tree (or derivation) from a sentence, or deciding there is no such parse tree

• There’s an alphabet soup of parsers
 ▪ Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser
 - Can parse any context-free grammar (but inefficient)
 ▪ LL(k)
 - top-down, parses input left-to-right (first L), produces a leftmost derivation (second L), k characters of lookahead
 ▪ LR(k)
 - bottom-up, parses input left-to-right (L), produces a rightmost derivation (R), k characters of lookahead

• We will study only some of this theory
 ▪ But we’ll start more concretely
Parsing practice

- Yacc and lex — most common ways to write parsers
 - yacc = “yet another compiler compiler” (but it makes parsers)
 - lex = lexical analyzer (makes lexers/tokenizers)
- These are available for most languages
 - bison/flex — GNU versions for C/C++
 - ocamlyacc/ocamllex — what we’ll use in this class
Example: Arithmetic expressions

• High-level grammar:
 ■ \[E \rightarrow E + E \mid n \mid (E) \]

• What should the tokens be?
 ■ Typically they are the terminals in the grammar
 - \{+, (,), n\}
 - Notice that \(n \) itself represents a set of values
 - Lexers use *regular expressions* to define tokens
 ■ But what will a typical input actually look like?

 \[
 \begin{array}{cccccccc}
 1 & + & 2 & + & \textbf{\textbackslash n} & (& 3 & + & 4 & 2 &) & \textbf{eof}
 \end{array}
 \]

 - We probably want to allow for whitespace
 - Notice not included in high-level grammar: lexer can discard it
 - Also need to know when we reach the end of the file
 - The parser needs to know when to stop
Lexing with ocamllex (.mll)

(* Slightly simplified format *)
{ header }
rule entrypoint = parse
 regexp_1 { action_1 }
 | ...
 | regexp_n { action_n }
and ...
{ trailer }

• Compiled to .ml output file
 - **header** and **trailer** are inlined into output file as-is
 - **regexps** are combined to form one (big!) finite automaton that recognizes the union of the regular expressions
 - Finds *longest* possible match in the case of multiple matches
 - Generated regexp matching function is called **entrypoint**
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
    regexp_1 { action_1 } | ...
    | regexp_n { action_n }
and ...
{ trailer }
```

- When match occurs, generated `entrypoint` function returns value in corresponding action
 - If we are lexing for `ocamlyacc`, then we’ll return tokens that are defined in the `ocamlyacc` input grammar
Example

```ocaml
{  open Ex1_parser
    exception Eof
}

rule token = parse
    | [' ' | '	' | '
']       { token lexbuf } (* skip blanks *)
    | ['\n']                { EOL }
    | ['0'-'9']+ as lxm      { INT(int_of_string lxm) }
    | '+'                    { PLUS }
    | '('                    { LPAREN }
    | ')'                    { RPAREN }
    | eof                    { raise Eof }

(* token definition from Ex1_parser *)
type token =
    | INT of (int)
    | EOL
    | PLUS
    | LPAREN
    | RPAREN
```
Generated code

You don’t need to understand the generated code
 But you should understand it’s not magic
Uses **Lexing** module from OCaml standard lib
Notice that **token** rule was compiled to **token** fn
 Mysterious **lexbuf** from before is the argument to **token**
 Type can be examined in **Lexing** module ocamldoc
Lexer limitations

- Automata limited to 32767 states
 - Can be a problem for languages with lots of keywords

```plaintext
rule token = parse
  "keyword_1" { ... } |
  "keyword_2" { ... } |
  ... |
  "keyword_n" { ... } |
  ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id |
  { IDENT id}
```

- Solution?
• Now we can build a parser that works with lexemes (tokens) from `token.mll`
 - Recall from 330 that parsers work by consuming one character at a time off input while building up parse tree
 - Now the input stream will be tokens, rather than chars

 1 + 2 + \n (3 + 4 2) eof

 INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof

 - Notice parser doesn’t need to worry about whitespace, deciding what’s an `INT`, etc
Suitability of Grammar

• Problem: our grammar is ambiguous
 - $E \rightarrow E + E | n | (E)$
 - Exercise: find an input that shows ambiguity

• There are parsing technologies that can work with ambiguous grammars
 - But they’ll provide multiple parses for ambiguous strings, which is probably not what we want

• Solution: remove ambiguity
 - One way to do this from 330:
 - $E \rightarrow T | E + T$
 - $T \rightarrow n | (E)$
Parsing with ocamlyacc (.mly)

• Compiled to .ml and .mli files
 - .mli file defines token type and entry point main for parsing
 - Notice first arg to main is a fn from a lexbuf to a token, i.e., the function generated from a .mll file!
Parsing with ocamlyacc (.mly)

- **.mly input**
  ```plaintext
  %{  
    header
  %}
  declarations
  %%
  rules
  %%
  trailer
  ```
  ```plaintext
  (* header *)
  type token = ...
  ...
  let yytables = ...
  (* trailer *)
  ```
 .ml output

- **.ml file uses Parsing library to do most of the work**
 - header and trailer copied direct to output
 - declarations lists tokens and some other stuff
 - rules are the productions of the grammar
 - Compiled to yytables; this is a table-driven parser Also include actions that are executed as parser executes
 - We’ll see an example next
Actions

• In practice, we don’t just want to check whether an input parses; we also want to do something with the result
 ▪ E.g., we might build an AST to be used later in the compiler

• Thus, each production in ocamlyacc is associated with an action that produces a result we want

• Each rule has the format
 ▪ \text{lhs: rhs \{act\}}
 ▪ When parser uses a production \text{lhs \rightarrow rhs} in finding the parse tree, it runs the code in \text{act}
 ▪ The code in \text{act} can refer to results computed by actions of other non-terminals in \text{rhs}, or token values from terminals in \text{rhs}
Example

```lALa
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main        /* the entry point */
%type <int> main
%
main:
  | expr EOL              { $1 }        (* 1 *)
expr:
  | term                  { $1 }        (* 2 *)
  | expr PLUS term        { $1 + $3 }   (* 3 *)
term:
  | INT                   { $1 }        (* 4 *)
  | LPAREN expr RPAREN    { $2 }        (* 5 *)
```

- Several kinds of declarations:
 - `%token` — define a token or tokens used by lexer
 - `%start` — define start symbol of the grammar
 - `%type` — specify type of value returned by actions
The “.” indicates where we are in the parse
- We’ve skipped several intermediate steps here, to focus only on actions
- (Details next)
Actions, in action

```
main:  
  | expr EOL           { $1 }
expr:  
  | term               { $1 }
  | expr PLUS term     { $1 + $3 }
term:  
  | INT                { $1 }
  | LPAREN expr RPAREN { $2 }
```

```
INT(1)  PLUS  INT(2)  PLUS  LPAREN  INT(3)  PLUS  INT(42)  RPAREN  eof
```

```
    | expr[48]
      main[48]
expr[3] + term[42]
  | expr[3]
    | expr[48]
      main[48]
  | term[1]
    | 2
```

```
expr[3] + term[42]
  | expr[3]
    | expr[48]
      main[48]
  | term[3]
    | 3
```

```
term[2]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[2]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```

```
term[45]
  | term[45]
    | LPAREN expr[48] RPAREN { $2 }
```
Invoking lexer/parser

```ocaml
try
  let lexbuf = Lexing.from_channel stdin in
  while true do
    let result = Ex1_parser.main Ex1_lexer.token lexbuf in
    print_int result; print_newline(); flush stdout
  done
with Ex1_lexer.Eof ->
  exit 0
```

- Tip: can also use `Lexing.from_string` and `Lexing.from_function`
Terminology review

• Derivation
 - A sequence of steps using the productions to go from the start symbol to a string

• Rightmost (leftmost) derivation
 - A derivation in which the rightmost (leftmost) nonterminal is rewritten at each step

• Sentential form
 - A sequence of terminals and non-terminals derived from the start-symbol of the grammar with 0 or more reductions
 - I.e., some intermediate step on the way from the start symbol to a string in the language of the grammar

• Right- (left-)sentential form
 - A sentential form from a rightmost (leftmost) derivation

• FIRST(\(\alpha\))
 - Set of initial symbols of strings derived from \(\alpha\)
Bottom-up parsing

- ocamlyacc builds a bottom-up parser
 - Builds derivation from input back to start symbol
 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

- To reduce \(\gamma_i \) to \(\gamma_{i-1} \)
 - Find production \(A \rightarrow \beta \) where \(\beta \) is in \(\gamma_i \), and replace \(\beta \) with \(A \)

- In terms of parse tree, working from leaves to root
 - Nodes with no parent in a partial tree form its upper fringe
 - Since each replacement of \(\beta \) with \(A \) shrinks upper fringe, we call it a reduction.

- Note: need not actually build parse tree
 - \(|\text{parse tree nodes}| = |\text{input}| + |\text{reductions}| \)
Bottom-up parsing, illustrated

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

S ⇒* α B y ⇒ α γ y ⇒* x y

rule B → γ

Upper fringe: solid
Yet to be parsed: dashed
Bottom-up parsing, illustrated

LR(1) parsing
- Scan input left-to-right
- Rightmost derivation
- 1 token lookahead

\[S \Rightarrow^* \alpha B y \Rightarrow \alpha \gamma y \Rightarrow^* x y \]

Upper fringe: solid
Yet to be parsed: dashed
Finding reductions

• Consider the following grammar

1. \(S \rightarrow a \ A \ B \ e \)
2. \(A \rightarrow A \ b \ c \)
3. \(| \ b \)
4. \(B \rightarrow d \)

Input: abbcde

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Production</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbcde</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>aAbcde</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>aAde</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>aABe</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

• How do we find the next reduction?
 • How do we do this efficiently?
Handles

• Goal: Find substring β of tree’s frontier that matches some production $A \rightarrow \beta$
 ▪ (And that occurs in the rightmost derivation)
 ▪ Informally, we call this substring β a handle

• Formally,
 ▪ A *handle* of a right-sentential form γ is a pair $(A \rightarrow \beta, k)$ where
 - $A \rightarrow \beta$ is a production and k is the position in γ of β’s rightmost symbol.
 - If $(A \rightarrow \beta, k)$ is a handle, then replacing β at k with A produces the right
 sentential form from which γ is derived in the rightmost derivation.
 ▪ Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
 - \Rightarrow the parser doesn’t need to scan past the handle (only lookahead)
Example

Grammar

1. \(S \rightarrow E \)
2. \(E \rightarrow E + T \)
3. \(| E - T \)
4. \(| T \)
5. \(T \rightarrow T \times F \)
6. \(| T / F \)
7. \(| F \)
8. \(F \rightarrow n \)
9. \(| id \)
10. \(| (E) \)

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle (prod,k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1,1</td>
</tr>
<tr>
<td>3</td>
<td>E-T</td>
<td>3,3</td>
</tr>
<tr>
<td>5</td>
<td>E-T*F</td>
<td>5,5</td>
</tr>
<tr>
<td>9</td>
<td>E-T*id</td>
<td>9,5</td>
</tr>
<tr>
<td>7</td>
<td>E-F*id</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>E-n*id</td>
<td>8,3</td>
</tr>
<tr>
<td>4</td>
<td>T-n*id</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>F-n*id</td>
<td>7,1</td>
</tr>
<tr>
<td>9</td>
<td>id-n*id</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Handles for rightmost derivation of \(id-n*id \)
Finding reductions

• Theorem: If G is unambiguous, then every right-sentential form has a unique handle
 ▪ If we can find those handles, we can build a derivation!

• Sketch of Proof:
 ▪ G is unambiguous \Rightarrow rightmost derivation is unique
 ▪ \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γ_i from γ_{i-1}
 ▪ and a unique position k at which $A \rightarrow \beta$ is applied
 ▪ \Rightarrow a unique handle $(A \rightarrow \beta, k)$

• This all follows from the definitions
Bottom-up handle pruning

- **Handle pruning**: discovering handle and reducing it
 - Handle pruning forms the basis for bottom-up parsing
- So, to construct a rightmost derivation

 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

- Apply the following simple algorithm

  ```
  for i ← n to 1 by −1
  
  Find handle \((A_i \rightarrow \beta_i, k_i)\) in \(\gamma_i\)
  
  Replace \(\beta_i\) with \(A_i\) to generate \(\gamma_{i-1}\)
  ```

 - This takes \(2n\) steps
Shift-reduce parsing algorithm

- Maintain a stack of terminals and non-terminals matched so far
 - Rightmost terminal/non-terminal on top of stack
 - Since we’re building rightmost derivation, will look at top elements of stack for reductions

```plaintext
push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
  if the top of the stack is a handle A → β
    then // reduce β to A
    pop |β| symbols off the stack
    push A onto the stack
  else if (token ≠ EOF)
    then // shift
    push token
    token ← next_token()
  else // need to shift, but out of input
    report an error
```

Potential errors
- Can’t find handle
- Reach end of file
Example

• Grammar

1. \(S \rightarrow E \)
2. \(E \rightarrow E + T \)
3. \(| E - T \)
4. \(| T \)
5. \(T \rightarrow T * F \)
6. \(| T / F \)
7. \(| F \)
8. \(F \rightarrow n \)
9. \(| id \)
10. \(| (E) \)

Shift/reduce parse of \(id-n*id \)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Handle (prod,k)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>id</td>
<td>-n*id</td>
<td>9,1</td>
<td>reduce 9</td>
</tr>
<tr>
<td>F</td>
<td>-n*id</td>
<td>7,1</td>
<td>reduce 7</td>
</tr>
<tr>
<td>T</td>
<td>-n*id</td>
<td>4,1</td>
<td>reduce 4</td>
</tr>
<tr>
<td>E</td>
<td>-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-</td>
<td>n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-n</td>
<td>*id</td>
<td>8,3</td>
<td>reduce 8</td>
</tr>
<tr>
<td>E-F</td>
<td>*id</td>
<td>7,3</td>
<td>reduce 7</td>
</tr>
<tr>
<td>E-T</td>
<td>*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*</td>
<td>id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*id</td>
<td></td>
<td>9,5</td>
<td>reduce 9</td>
</tr>
<tr>
<td>E-T*F</td>
<td></td>
<td>5,5</td>
<td>reduce 5</td>
</tr>
<tr>
<td>E-T</td>
<td></td>
<td>3,3</td>
<td>reduce 3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1,1</td>
<td>reduce 1</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>none</td>
<td>accept</td>
</tr>
</tbody>
</table>
Parse tree for example
Algorithm actions

- Shift-reduce parsers have just four actions
 - **Shift** — next word is shifted onto the stack
 - **Reduce** — right end of handle is at top of stack
 - Locate left end of handle within the stack
 - Pop handle off stack and push appropriate Lhs
 - **Accept** — stop parsing and report success
 - **Error** — call an error reporting/recovery routine

- Cost of operations
 - **Accept** is constant time
 - **Shift** is just a push and a call to the scanner
 - **Reduce** takes $|\text{rhs}|$ pops and 1 push
 - If handle-finding requires state, put it in the stack ⇒ 2x work
 - **Error** depends on error recovery mechanism
Finding handles

- To be a handle, a substring of sentential form \(\gamma \) must:
 - Match the right hand side \(\beta \) of some rule \(A \rightarrow \beta \)
 - There must be some rightmost derivation from the start symbol that produces \(\gamma \) with \(A \rightarrow \beta \) as the last production applied
 - \(\Rightarrow \) Looking for rhs’s that match strings is not good enough

- How can we know when we have found a handle?
 - LR(1) parsers use DFA that runs over stack and finds them
 - One token look-ahead determines next action (shift or reduce) in each state of the DFA.
 - A grammar is LR(1) if we can build an LR(1) parser for it

- LR(0) parsers: no look-ahead
LR(1) parsing

- Can use a set of tables to describe LR(1) parser

- ocamlyacc automates the process of building the tables
 - Standard library Parser module interprets the tables

- LR parsing invented in 1965 by Donald Knuth

- LALR parsing invented in 1969 by Frank DeRemer
LR(1) parsing algorithm

- Two tables
 - ACTION: reduce/shift/accept
 - GOTO: state to be in after reduce
- Cost
 - |input| shifts
 - |derivation| reductions
 - One accept
- Detects errors by failure to shift, reduce, or accept

```c
stack.push(INVALID); stack.push(s_0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A→β" ) {
        stack.popnum(2*|β|); // pop 2*|β| symbols
        s = stack.top();
        stack.push(A);
        stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift s_i" ) {
        stack.push(token); stack.push(s_i);
        token ← scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept" && token == EOF )
        not_found = false;
    else report a syntax error and recover;
}
report success;
```
Example parser table

- **ocamlyacc -v ex1_parser.mly** — produce `.output` file with parser table

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>goto</th>
<th>productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>1</td>
<td>s3</td>
<td>s4</td>
<td>acc 6 7 entry → . main</td>
</tr>
<tr>
<td>2</td>
<td>r4</td>
<td></td>
<td>term → INT .</td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>s4</td>
<td>8 7 term → (. expr)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>5</td>
<td>s9</td>
<td>s10</td>
<td>main → expr . EOL</td>
</tr>
<tr>
<td>6</td>
<td>r2</td>
<td></td>
<td>expr → term .</td>
</tr>
<tr>
<td>7</td>
<td>s10</td>
<td>s11</td>
<td>expr → expr . + term</td>
</tr>
<tr>
<td>8</td>
<td>r1</td>
<td></td>
<td>main → expr EOL .</td>
</tr>
<tr>
<td>9</td>
<td>s3</td>
<td>s4</td>
<td>12 expr → expr + . term</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>expr → expr + term .</td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td></td>
<td>term → (expr .)</td>
</tr>
<tr>
<td>12</td>
<td>r3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB: Numbers in shift refer to state numbers

Numbers in reduction refer to production numbers
Example parse (N+N+N)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,N,3</td>
<td>+N+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,term,7</td>
<td>+N+N</td>
<td>r2</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+10</td>
<td>N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+10,N,3</td>
<td>+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+10,term,12</td>
<td>+N</td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+10</td>
<td>N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+10,N,3</td>
<td></td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+10,term,12</td>
<td></td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td></td>
<td>s9</td>
</tr>
<tr>
<td>1,expr,6,EOL,9</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>accept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1	1,term,7	+N+N	r2
1	1,expr,6	+N+N	s10
1	1,expr,6,+10	N+N	s3
1	1,expr,6,+10,N,3	+N	r4
1	1,expr,6,+10,term,12	+N	r3
1	1,expr,6	+N	s10
1	1,expr,6,+10	N	s3
1	1,expr,6,+10,N,3	+N	r4
1	1,expr,6,+10,term,12	+N	r3
1	1,expr,6	+N	s10
1	1,expr,6,EOL,9	+N	r1
accept			
Example parser table (cont’d)

- Notes
 - Notice derivation is built up (bottom to top)
 - Table only contains kernel of each state
 - Apply closure operation to see all the productions in the state
- LR(1) parsing requires start symbol not on any rhs
 - Thus, ocamlyacc actually adds another production
 - %entry% → \001 main
 - (so the acc in the previous table is a slight fib)
- Values returned from actions stored on the stack
 - Reduce triggers computation of action result
Why does this work?

• Stack = upper fringe
 ▪ So all possible handles on top of stack
 ▪ Shift inputs until top elements of stack form a handle

• Build a handle-recognizing DFA
 ▪ Language of handles is regular
 ▪ ACTION and GOTO tables encode the DFA
 - Shift = DFA transition
 - Reduce = DFA accept
 - New state = GOTO[state at top of stack (after pop), lhs]

• If we can build these tables, grammar is LR(1)
LR(k) items

- An LR(k) item is a pair [P, δ], where
 - P is a production A → β with a • at some position in the rhs
 - δ is a lookahead string of length ≤ k (words or $)
 - The • in an item indicates the position of the top of the stack

- LR(1):
 - [A → • βγ, a] — input so far consistent with using A → βγ immediately after symbol on top of stack
 - [A → β • γ, a] — input so far consistent with using A → βγ at this point in the parse, and parser has already recognized β
 - [A → βγ •, a] — parser has seen βγ, and lookahead of a consistent with reducing to A

- LR(1) items represent valid configurations of an LR(1) parser; DFA states are sets of LR(1) items
LR(k) items, cont’d

- Ex: $A \rightarrow BCD$ with lookahead a can yield 4 items
 - $[A \rightarrow \cdot BCD, a]$, $[A \rightarrow B \cdot CD, a]$, $[A \rightarrow BC \cdot D, a]$, $[A \rightarrow BCD \cdot, a]$
 - Notice: set of LR(1) items for a grammar is finite

- Carry lookaheads along to choose correct reduction
 - Lookahead has no direct use in $[A \rightarrow \beta \cdot \gamma, a]$
 - In $[A \rightarrow \beta \cdot, a]$, a lookahead of $a \Rightarrow$ reduction by $A \rightarrow \beta$
 - For $\{ [A \rightarrow \beta \cdot, a], [B \rightarrow \gamma \cdot \delta, b] \}$
 - Lookahead of $a \Rightarrow$ reduce to A
 - $\text{FIRST}(\delta) \Rightarrow$ shift
 - (else error)
LR(1) table construction

- States of LR(1) parser contain sets of LR(1) items
 - Initial state s0
 - Assume S’ is the start symbol of grammar, does not appear in rhs
 - (Extend grammar if necessary to ensure this)
 - $s0 = \text{closure}([S' \rightarrow S,\Rightarrow])$ ($\Rightarrow = \text{EOF}$)
 - For each s_k and each terminal/non-terminal X, compute new state $\text{goto}(s_k, X)$
 - Use $\text{closure}()$ to “fill out” kernel of new state
 - If the new state is not already in the collection, add it
 - Record all the transitions created by $\text{goto}()$
 - These become ACTION and GOTO tables
 - i.e., the handle-finding DFA
 - This process eventually reaches a fixpoint
Closure()

- $[A \rightarrow \beta \bullet B \delta, a]$ implies $[B \rightarrow \cdot \gamma, x]$ for each production with B on lhs and each $x \in \text{FIRST}(\delta a)$
 - (If you’re about to see a B, you may also see a γ)

Closure(s)
while (s is still changing)
 \forall items $[A \rightarrow \beta \bullet B \delta, a] \in s$ // item with \bullet to left of nonterminal B
 \forall productions $B \rightarrow \gamma \in P$ // all productions for B
 \forall $b \in \text{FIRST}(\delta a)$ // tokens appearing after B
 if $[B \rightarrow \cdot \gamma, b] \not\in s$ // form LR(1) item w/ new lookahead
 then add $[B \rightarrow \cdot \gamma, b]$ to s // add item to s if new

- Classic fixed-point method
- Halts because $s \subset \text{ITEMS}$ (worklist version is faster)
 - Closure “fills out” a state
Example — closure with LR(0)

\[S \rightarrow E \]
\[E \rightarrow T+E \]
\[T \rightarrow \text{id} \]

\[[S \rightarrow \cdot E] \]
\[[E \rightarrow \cdot T+E] \]
\[[E \rightarrow \cdot T] \]
\[[T \rightarrow \cdot \text{id}] \]

[kernel item]
[derived item]
Example — closure with LR(1)

\[S \rightarrow E \]
\[E \rightarrow T + E \]
\[\mid T \]
\[T \rightarrow \text{id} \]

- [kernel item]
 - [derived item]

- [S \rightarrow \cdot E, $]
- [E \rightarrow \cdot T+E, $]
- [E \rightarrow \cdot T, $]
- [T \rightarrow \cdot \text{id}, +]
- [T \rightarrow \cdot \text{id}, $]

- [E \rightarrow T+ \cdot E, $]
- [E \rightarrow \cdot T+E, $]
- [E \rightarrow \cdot T, $]
- [T \rightarrow \cdot \text{id}, +]
- [T \rightarrow \cdot \text{id}, $]
Goto

- **Goto(s,x)** computes the state that the parser would reach if it recognized an x while in state s
 - Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a]
 - Should also includes closure([A→βX•δ,a])

Goto(s, X)
new ← Ø
∀ items [A→β•Xδ,a] ∈ s // for each item with • to left of X
 new ← new ∪ [A→βX•,a] // add item with • to right of X
return closure(new) // remember to compute closure!

- Not a fixed-point method!
- Straightforward computation
- Uses closure()
- Goto() moves forward
Example — goto with LR(0)

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T+E \\
T & \rightarrow id
\end{align*}
\]

- [kernel item]
- [derived item]

\[
\begin{align*}
[S \rightarrow \cdot E] \\
[E \rightarrow \cdot T+E] \\
[E \rightarrow \cdot T] \\
[T \rightarrow \cdot id]
\end{align*}
\]
Example — goto with LR(1)

\[S \rightarrow E \]
\[E \rightarrow T+E \]
\[\mid T \]
\[T \rightarrow \text{id} \]

[Kernel item]
[Derived item]
Building parser states

\[
cc_0 \leftarrow \text{closure}\left([S' \rightarrow \bullet S, \$] \right) \\
CC \leftarrow \{ cc_0 \}
\]

while (new sets are still being added to CC)
 for each unmarked set \(cc_j \in CC \)
 mark \(cc_j \) as processed
 for each \(x \) following a \(\bullet \) in an item in \(cc_j \)
 temp \(\leftarrow \) goto\((cc_j, x) \)
 if temp \(\not\in \) CC
 then CC \(\leftarrow \) CC \(\cup \) \{ temp \}
 record transitions from \(cc_j \) to temp on x

- \(CC \) = canonical collection (of LR(k) items)
- Fixpoint computation (worklist version)
- Loop adds to \(CC \)
 - \(CC \subseteq 2^{\text{ITEMS}} \), so \(CC \) is finite
Example LR(0) states

\[S \rightarrow E \]
\[E \rightarrow T+E \]
\[\mid T \]
\[T \rightarrow \text{id} \]

\[[S \rightarrow \cdot E] \]
\[[E \rightarrow \cdot T+E] \]
\[[E \rightarrow \cdot T] \]
\[[T \rightarrow \cdot \text{id}] \]

\[E \]

\[[S \rightarrow E \cdot] \]
\[[T \rightarrow \text{id} \cdot] \]

\[T \]

\[[E \rightarrow T \cdot +E] \]
\[[E \rightarrow T \cdot] \]

\[+ \]

\[[E \rightarrow T + \cdot E] \]
\[[E \rightarrow \cdot T+E] \]
\[[E \rightarrow \cdot T] \]
\[[T \rightarrow \cdot \text{id}] \]

\[E \]

\[[E \rightarrow T + E \cdot] \]
Example LR(1) states

S → E
E → T+E
| T
T → id

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T • +E, $]
[E → T •, $]

[T → id •, +]
[T → id •, $]

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → E •, $]
[T → id •, $]

[E → T + E •, $]
Building ACTION and GOTO tables

<table>
<thead>
<tr>
<th>∀ set (s_x \in S)</th>
<th>∀ item (i \in s_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (i) is ([A \rightarrow \beta \cdot a \gamma, b]) and goto((s_x, a) = s_k), (a \in \text{terminals})</td>
<td>(\text{then ACTION}[x, a] \leftarrow \text{“shift } k\”)</td>
</tr>
<tr>
<td>(\text{else if } i) is ([S' \rightarrow S \cdot, $])</td>
<td>(\text{else if }) (i) is ([A \rightarrow \beta \cdot, a])</td>
</tr>
<tr>
<td>(\text{then ACTION}[x, $] \leftarrow \text{“accept”})</td>
<td>(\text{then ACTION}[x, a] \leftarrow \text{“reduce } A \rightarrow \beta\”)</td>
</tr>
<tr>
<td>(\forall n \in \text{nonterminals})</td>
<td>(\forall n \in \text{nonterminals})</td>
</tr>
<tr>
<td>if goto((s_x, n) = s_k)</td>
<td>if goto((s_x, n) = s_k)</td>
</tr>
<tr>
<td>(\text{then GOTO}[x, n] \leftarrow k)</td>
<td>(\text{then GOTO}[x, n] \leftarrow k)</td>
</tr>
</tbody>
</table>

- Many items generate no table entry
 - e.g., \([A \rightarrow \beta \cdot B \alpha, a]\) does not, but closure ensures that all the rhs’s for \(B\) are in \(sx\)
Ex ACTION and GOTO tables

1. \(S \to E \)
2. \(E \to T+E \)
3. \(T | id \)
4. \(T \to \text{id} \)

\[
\begin{array}{c|c|c}
\text{ACTION} & \text{GOTO} \\
\hline
\text{id} & + & \$ \\
S0 & s3 & 1 & 2 \\
S1 & \text{acc} & \text{} & \\
S2 & s4 & r3 & \\
S3 & r4 & r4 & \\
S4 & s3 & 5 & 2 \\
S5 & \text{} & r2 & \\
\end{array}
\]
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $| T$
4. $T \rightarrow id$

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>id</td>
<td>$+$</td>
</tr>
<tr>
<td>S1</td>
<td>s3</td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>r2</td>
</tr>
<tr>
<td>S5</td>
<td>s3</td>
<td>r2</td>
</tr>
</tbody>
</table>

Entries for shift
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| \quad T \)
4. \(T \rightarrow id \)

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>r2</td>
</tr>
</tbody>
</table>

Entry for accept

\[S \rightarrow \cdot E, \$
\[E \rightarrow \cdot T+E, \$
\[E \rightarrow \cdot T, \$
\[T \rightarrow \cdot id, +\]
\[T \rightarrow \cdot id, \$
\[E \rightarrow T \cdot +E, \$
\[E \rightarrow T \cdot, \$
\[T \rightarrow \cdot id, +\]
\[T \rightarrow \cdot id, \$

\[E \rightarrow T + E \cdot, \$

\[E \rightarrow T \cdot + E, \$
\[E \rightarrow \cdot T+E, \$
\[E \rightarrow \cdot T, \$
\[T \rightarrow \cdot id, +\]
\[T \rightarrow \cdot id, \$

\[E \rightarrow T + E \cdot, \$

57
Ex ACTION and GOTO tables

1. S → E
2. E → T+E
3. | T
4. T → id

Entries for reduce

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

E

T

id

T

id

T

E

T

id

T

E

T

$
Ex ACTION and GOTO tables

1. $S \rightarrow E$

2. $E \rightarrow T+E$

3. $| T$

4. $T \rightarrow id$

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>s3</td>
<td>E</td>
</tr>
<tr>
<td>S1</td>
<td>acc</td>
<td>1</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td>r2</td>
<td>2</td>
</tr>
</tbody>
</table>

Entries for GOTO
What can go wrong?

- What if set s contains $[A \rightarrow \beta \cdot ay, b]$ and $[B \rightarrow \beta \cdot , a]$?
 - First item generates “shift”, second generates “reduce”
 - Both define $\text{ACTION}[s,a]$ — cannot do both actions
 - This is a shift/reduce conflict

- What if set s contains $[A \rightarrow \gamma \cdot , a]$ and $[B \rightarrow \gamma \cdot , a]$?
 - Each generates “reduce”, but with a different production
 - Both define $\text{ACTION}[s,a]$ — cannot do both reductions
 - This is called a reduce/reduce conflict

- In either case, the grammar is not LR(1)
Shift/reduce conflict

- Associativity unspecified
 - Ambiguous grammars always have conflicts
 - But, some non-ambiguous grammars also have conflicts

```plaintext
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main       /* the entry point */
%type <int> main
%
main:
  | expr EOL        { $1 }  
expr:
  | INT             { $1 }  
  | expr PLUS expr  { $1 + $3 }  
  | LPAREN expr RPAREN { $2 }  
```
Solving conflicts

- Refactor grammar
- Specify operator precedence and associativity

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */

- Lots of details here
 - See “12.4.2 Declarations” at

- When comparing operator on stack with lookahead
 - Shift if lookahead has higher prec OR same prec, right assoc
 - Reduce if lookahead has lower prec OR same prec, left assoc

- Can use smaller, simpler (ambiguous) grammars
 - Like the one we just saw
Left vs. right recursion

- **Right recursion**
 - Required for termination in top-down parsers
 - Produces right-associative operators

- **Left recursion**
 - Works fine in bottom-up parsers
 - Limits required stack space
 - Produces left-associative operators

- **Rule of thumb**
 - Left recursion for bottom-up parsers
 - Right recursion for top-down parsers
Reduce/reduce conflict (1)

- Often these conflicts suggest a serious problem
 - Here, there’s a deep ambiguity
reduce/reduce conflict (2)

%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%
main:
| expr EOL { $1 }
expr:
| term1 { $1 }
| term1 PLUS PLUS expr { $1 + $4 }
| term2 PLUS expr { $1 + $3 }
term1 :
| INT { $1 }
| LPAREN expr RPAREN { $2 }
term2 :
| INT { $1 }

- Grammar not ambiguous, but not enough lookahead to distinguish last two `expr` productions
Shrinking the tables

• Combine terminals
 ▪ E.g., number and identifier, or + and -, or * and /
 - Directly removes a column, may remove a row

• Combine rows or columns (table compression)
 ▪ Implement identical rows once and remap states
 ▪ Requires extra indirection on each lookup
 ▪ Use separate mapping for ACTION and for GOTO

• Use another construction algorithm
 ▪ LALR(1) used by ocamlyacc
LALR(1) parser

- Define the core of a set of LR(1) items as
 - Set of LR(0) items derived by ignoring lookahead symbols

\[
\begin{align*}
[E &\rightarrow a \cdot, b] \\
[A &\rightarrow a \cdot, c] \\
[E &\rightarrow a \cdot] \\
[A &\rightarrow a \cdot]
\end{align*}
\]

LR(1) state

Core

- LALR(1) parser merges two states if they have the same core

- Result
 - Potentially much smaller set of states
 - May introduce reduce/reduce conflicts
 - Will not introduce shift/reduce conflicts
LALR(1) example

• Introduces reduce/reduce conflict
 - Can reduce either $E \rightarrow a$ or $A \rightarrow ba$ for lookahead = b
LALR(1) vs. LR(1)

• Example grammar

\[
S' \rightarrow S \\
S \rightarrow aAd \mid bBd \mid aBe \mid bAe \\
A \rightarrow c \\
B \rightarrow c
\]

• LR(0) ?

• LR(1) ?

• LALR(1) ?
LR(k) Parsers

- Properties
 - Strictly more powerful than LL(k) parsers
 - Most general non-backtracking shift-reduce parser
 - Detects error as soon as possible in left-to-right scan of input
 - Contents of stack are viable prefixes
 - Possible for remaining input to lead to successful parse
Error handling (lexing)

- What happens when input not handled by any lexing rule?
 - An exception gets raised
 - Better to provide more information, e.g.,

```ocaml
rule token = parse
...
| _ as lxm { Printf.printf "Illegal character %c" lxm;
           failwith "Bad input" }
```

- Even better, keep track of line numbers
 - Store in a global-ish variable (oh no!)
 - Increment as a side effect whenever \n recognized
Error handling (parsing)

• What happens when parsing a string not in the grammar?
 ▪ Reject the input
 ▪ Do we keep going, parsing more characters?
 - May cause a cascade of error messages
 - Could be more useful to programmer, if they don’t need to stop at the first error message (what do you do, in practice?)

• Ocamlyacc includes a basic error recovery mechanism
 ▪ Special token `error` may appear in rhs of production
 ▪ Matches erroneous input, allowing recovery
Error example (1)

If unexpected input appears while trying to match `expr`, match token to `error`
- Effectively treats token as if it is produced from `expr`
- Triggers error action

```plaintext
... expr:
  | term                 { $1 }
  | expr PLUS term       { $1 + $3 }
  | error                { Printf.printf "invalid expression"; 0 }
term: ...
```
Error example (2)

• If unexpected input appears while trying to match term, match tokens to error
 ▪ Pop every state off the stack until LPAREN on top
 ▪ Scan tokens up to RPAREN, and discard those, also
 ▪ Then match error production

```
...  
term:
|  INT            { $1 } |
|  LPAREN expr RPAREN  { $2 } |
|  LPAREN error RPAREN { printf "Syntax error!\n"; 0} |
```
Error recovery in practice

• A very hard thing to get right!
 - Necessarily involves guessing at what malformed inputs you may see

• How useful is recovery?
 - Compilers are very fast today, so not so bad to stop at first error message, fix it, and go on
 - On the other hand, that does involve some delay

• Perhaps the most important feature is good error messages
 - Error recovery features useful for this, as well
 - Some compilers are better at this than others
OCamlyacc tip

• Setting OCAMLRUNPARAM=p will cause the parsing steps to be printed out as the parser runs.
• (And setting OCAMLRUNPARAM=b will tell OCaml to print a stack backtrace for any thrown exceptions.)
Real programming languages

• Essentially all real programming languages don’t quite work with parser generators
 ▪ Even Java is not quite LALR(1)

• Thus, real implementations play tricks with parsing actions to resolve conflicts

• In-class exercise: C typedefs and identifier declarations/definitions
Additional Parsing Technologies

• For a long time, parsing was a “dead” field
 ▪ Considered solved a long time ago
• Recently, people have come back to it
 ▪ LALR parsing can have unnecessary parsing conflicts
 ▪ LALR parsing tradeoffs more important when computers were slower and memory was smaller
• Many recent new (or new-old) parsing techniques
 ▪ GLR — generalized LR parsing, for ambiguous grammars
 ▪ LL(*) — ANTLR
 ▪ Packrat parsing — for parsing expression grammars
 ▪ etc...
• The input syntax to many of these looks like yacc/lex
Designing language syntax

• Idea 1: Make it look like other, popular languages
 ▪ Java did this (OO with C syntax)

• Idea 2: Make it look like the domain
 ▪ There may be well-established notation in the domain (e.g., mathematics)
 ▪ Domain experts already know that notation

• Idea 3: Measure design choices
 ▪ E.g., ask users to perform programming (or related) task with various choices of syntax, evaluate performance, survey them on understanding
 - This is very hard to do!

• Idea 4: Make your users adapt
 ▪ People are really good at learning...