CMSC 430
Introduction to Compilers
Fall 2015

Operational Semantics
Syntax vs. semantics

- Syntax = grammatical structure
- Semantics = underlying meaning

- Sentences in a language can be syntactically well-formed but semantically meaningless
 - if ("foo" > 37) { oogbooga(3); "baz" * "qux"; }

- ocamllex and ocamlyacc enforce syntax
 - (Though could play tricks in actions to check semantics)
Syntax vs. semantics (cont’d)

• General principle: enforce correctness at the earliest stage possible
 ▪ Keywords identified in lexer
 ▪ Balanced ()’s enforced in parser
 ▪ Types enforced afterward

• Why?
 ▪ Earlier in pipeline ⇒ simpler to think about
 ▪ Reporting errors is easier
 - Less transformation from original program
 - Errors may be easier to localize
 ▪ Faster algorithms for detecting violations
 - Higher chance could employ them interactively in IDE
Detour: Natural deduction

• We are going to use *natural deduction* rules to describe semantics
 ▪ So we need to understand how those work first

• Natural deduction rules provide a syntax for writing down proofs
 ▪ Each rule is essentially an axiom
 ▪ Rules are composed together
 - The result is called a *derivation*
 ▪ The things rules prove are called *judgments*
Structure of a rule

- H1, H2, ..., Hn are hypotheses, C is the conclusion.
- “If H1 and H2 and ... and Hn hold, then C holds.”
Example: Logic

\[\begin{align*}
A & \quad B \\
\hline
A \land B & \quad \land\text{-I} & A \land B & \quad \land\text{-E}_L & A \land B & \quad \land\text{-E}_R \\
A & \quad B \\
\hline
A & \quad B & \quad \lor\text{-I}_L & A & \quad \lor\text{-I}_R & A & \quad B & \quad \lor\text{-E}
\end{align*} \]

\[\begin{align*}
A & \quad \lor\text{-I}_L & B & \quad \lor\text{-I}_R & A & \quad B & \quad \lor\text{-E}
\end{align*} \]

\[\begin{align*}
A & \quad \rightarrow\text{-I} & A & \quad A \Rightarrow B & \quad \rightarrow\text{-E} & \text{(modus ponens)}
\end{align*} \]

\[\begin{align*}
A & \quad \rightarrow\text{-E} & A & \quad A \Rightarrow B & \quad \rightarrow\text{-E} & \text{(modus ponens)}
\end{align*} \]
Example: Logic (cont’d)

\[\begin{align*}
A & \\
\text{...} & \\
C & \\
\neg A & \\
(\text{reductio ad absurdum}) & \\
\end{align*} \]

\[\begin{align*}
A & \\
\text{...} & \\
\neg C & \\
\neg\neg A & \\
(\text{noncontradiction}) & \\
B & \\
\neg\neg E & \\
\end{align*} \]

- Note these are axioms from classical logic
Example derivations

\[
\begin{align*}
A \land (B \lor C) & \\
\hline
A & \\
\hline
(A \land (B \lor C)) \Rightarrow A
\end{align*}
\]

\[
\begin{align*}
A \lor (A \land B) & \\
\hline
A & \\
\hline
A
\end{align*}
\]

\[
\begin{align*}
A \lor (A \land B) & \Rightarrow A
\end{align*}
\]
IMP: A language of commands

a ::= n | X | a0+a1 | a0-a1 | a0×a1
b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1
c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c

• n ∈ N = integers, X ∈ Var = variables, bv ∈ Bool = {true, false}
• This is a typical way of presenting a language
 ▪ Notice grammar is for ASTs
 - Not concerned about issues like ambiguity, associativity, precedence
• Syntax stratified into commands (c) and expressions (a,b)
 ▪ Expressions have no side effects
• No function calls (and no higher order functions)
• So: How do we specify the semantics of IMP?
Program state

• IMP contains imperative updates, so we need to model the program state
 ▪ Here the state is simply the integer value of each variable
 ▪ (Notice can’t assign a boolean to a variable, by syntax!)

• State:
 ▪ $\sigma : \text{Var} \rightarrow \mathbb{N}$
 ▪ A state σ is a mapping from variables to their values
• Operational semantics has three kinds of judgments
 - \(\langle a, \sigma \rangle \rightarrow n \)
 - In state \(\sigma \), arithmetic expression \(a \) evaluates to \(n \)
 - \(\langle b, \sigma \rangle \rightarrow \text{bv} \)
 - In state \(\sigma \), boolean expression \(b \) evaluates to \text{true} or \text{false}
 - \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Running command \(c \) in state \(\sigma \) produces state \(\sigma' \)

• Can immediately see only commands have side effects
 - Only form whose evaluation produces a new state
 - Commands also do not return values
 - Note this is math, so we express state changes by creating the new state \(\sigma' \). We can’t just “mutate” \(\sigma \).
Arithmetic evaluation

\[
\begin{align*}
\langle n, \sigma \rangle &\rightarrow n \\
\langle X, \sigma \rangle &\rightarrow \sigma(X) \\
\langle a_0, \sigma \rangle &\rightarrow n_0 \\
\langle a_1, \sigma \rangle &\rightarrow n_1 \\
\langle a_0 + a_1, \sigma \rangle &\rightarrow n_0 + n_1 \\
\langle a_0 - a_1, \sigma \rangle &\rightarrow n_0 - n_1 \\
\langle a_0 \times a_1, \sigma \rangle &\rightarrow n_0 \times n_1
\end{align*}
\]
Arithmetic evaluation (cont’d)

• Notes:
 - Rule for variables only defined if \(X \) is in \(\text{dom}(\sigma) \). Otherwise the program goes wrong, i.e., it has no meaning
 - Hypotheses of last three rules stacked to save space
 - Notice difference between syntactic operators, on the left side of arrows, and mathematical operators, on the right side of arrows
 - One rule for each kind of expression
 - These are syntax-directed rules
 - In the rules, we use terminals and non-terminals in the grammar to stand for anything producible from them
 - E.g., \(n \) stands for any integer; \(\sigma \) for any state; etc.
 - Order of evaluation irrelevant, because there are no side effects
Sample derivation

• $1+2+3$

• $(2^x)-4 \text{ in } \sigma = [x \mapsto 3]$
Correspondence to OCaml

(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *)

type aexpr =
| AInt of int
| AVar of string
| APlus of aexpr * aexpr
| AMinus of aexpr * aexpr
| ATimes of aexpr * aexpr

let rec aeval sigma = function
| AInt n -> n
| AVar n -> List.assoc n sigma
| APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
| AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2)
| ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
Boolean evaluation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle \text{true}, \sigma \rangle)</td>
<td>true</td>
</tr>
<tr>
<td>(\langle \text{false}, \sigma \rangle)</td>
<td>false</td>
</tr>
<tr>
<td>(\langle \neg b, \sigma \rangle)</td>
<td>(\neg bv)</td>
</tr>
<tr>
<td>(\langle a0, \sigma \rangle)</td>
<td>(n0)</td>
</tr>
<tr>
<td>(\langle a1, \sigma \rangle)</td>
<td>(n1)</td>
</tr>
<tr>
<td>(\langle a0 = a1, \sigma \rangle)</td>
<td>(n0 = n1)</td>
</tr>
<tr>
<td>(\langle \text{and} (b0 \land b1), \sigma \rangle)</td>
<td>(\text{and} (bv0 \land bv1))</td>
</tr>
<tr>
<td>(\langle \text{or} (b0 \lor b1), \sigma \rangle)</td>
<td>(\text{or} (bv0 \lor bv1))</td>
</tr>
</tbody>
</table>
Sample derivations

• \(\neg \text{false} \land \text{true} \)

• \(2 \leq X \lor X \leq 4 \) in \(\sigma = [X \mapsto 3] \)
Correspondence to OCaml

```
(* b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 *)

type bexpr =
| BV of bool
| BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr

let rec beval sigma = function
| BV b -> b
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
| BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
| BNot b -> not (beval sigma b)
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)
```
Command evaluation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle & \rightarrow \sigma \\
\langle a, \sigma \rangle & \rightarrow n \\
\langle X:=a, \sigma \rangle & \rightarrow \sigma[X\mapsto n]
\end{align*}
\]

\[
\begin{align*}
\langle c0, \sigma \rangle & \rightarrow \sigma0 \\
\langle c1, \sigma0 \rangle & \rightarrow \sigma1 \\
\langle c0; c1, \sigma \rangle & \rightarrow \sigma1
\end{align*}
\]

- Here \(\sigma[X\mapsto a]\) is the state that is the same as \(\sigma\), except \(X\) now maps to \(a\)
 - \((\sigma[X\mapsto a])(X) = a\)
 - \((\sigma[X\mapsto a])(Y) = \sigma(Y) \quad X \neq Y\)
- Notice order of evaluation explicit in sequence rule
Command evaluation (cont’d)

- Two rules for conditional
 - Just like in logic we needed two rules for \land-E and \lor-I
 - Notice we specify only one command is executed
Command evaluation (cont’d)

\[\langle b, \sigma \rangle \rightarrow \text{false} \]

\[\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma \]

\[\langle b, \sigma \rangle \rightarrow \text{true} \]
\[\langle \text{c; while } b \text{ do } c, \sigma \rangle \rightarrow \sigma' \]

\[\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma' \]
Sample derivations

- \(n:=3; \ f:=1; \ \text{while } n \geq 1 \ \text{do } f := f \times n; \ n := n - 1 \)
Correspondence to OCaml

(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c *)

type cmd =
| CSkip
| CAssn of string * aexpr
| CSeq of cmd * cmd
| CIf of bexpr * cmd * cmd
| CWhile of bexpr * cmd

let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x:(aeval sigma a))::sigma
 (* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
 let sigma0 = ceval sigma c0 in ceval sigma0 c1
 (* or “ceval (ceval sigma c0) c1” *)
| CIf (b, c0, c1) ->
 if (beval sigma b) then (ceval sigma c0)
 else (ceval sigma c1)
| CWhile (b, c) ->
 if (beval sigma b)
 then ceval sigma (CSeq (c, CWhile(b,c)))
 else sigma
Big-step semantics

- Semantics given are “big step” or “natural semantics”
 - E.g., \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Commands fully evaluated to produce the final output state, in one, big step

- Limitation: Can’t give semantics to non-terminating programs
 - We would need to work with infinite derivations, which is typically not valid
 - (Note: It is possible, though, using a co-inductive interpretation)
Small-step semantics

- Instead, can expose intermediate steps of computation
 - $a \rightarrow_\sigma a'$
 - Evaluating a one step in state σ produces a'
 - $b \rightarrow_\sigma b'$
 - Evaluating b one step in state σ produces b'
 - $\langle c, \sigma \rangle \rightarrow_1 \langle c', \sigma' \rangle$
 - Running command c in state σ for one step yields a new command c' and new state σ'

- Note putting σ on the arrow is just a convenience
 - Good notation for stringing evaluations together
 - $a_0 \rightarrow_\sigma a_1 \rightarrow_\sigma a_2 \rightarrow_\sigma ...$
 - Put 1 on arrow for commands just to let us distinguish different kinds of arrows
Small-step rules for arithmetic

\[X \rightarrow_\sigma \sigma(X) \]

\[
\begin{align*}
a_0 & \rightarrow_\sigma a_0' \\
a_0 + a_1 & \rightarrow_\sigma a_0' + a_1 \\
& \quad \text{Similarly for - and } \times \\
a_1 & \rightarrow_\sigma a_1' \\
 n + a_1 & \rightarrow_\sigma n + a_1' \\
& \quad \text{Notice no rule for evaluating integer } n \\
 p = m + n & \rightarrow_\sigma p \\
n + m & \rightarrow_\sigma p
\end{align*}
\]

- An integer is in \textit{normal form}, meaning no further evaluation is possible

- We’ve fixed the order of evaluation
 - Could also have made it non-deterministic
Context rules

- We have some rules that do the “real” work
 - The rest are context rules that define order of evaluation
- Cool trick (due to Hieb and Felleisen):
 - Define a context as a term with a “hole” in it
 - C ::= □ | C+a | n+C | C-a | n-C | C×a | n×C
 - Notice the terms generated by this grammar always have exactly one □, and it always appears at the next position that can be evaluated
 - Define C[a] to be C where □ is replaced by a
 - Ex: ((□+3) × 5)[4] = (4+3) × 5
 - Now add one, single context rule:

\[a \rightarrow_{\sigma} a' \]

\[C[a] \rightarrow_{\sigma} C[a'] \]
Small-step rules for booleans

• Very similar to arithmetic expressions
 ▪ Too boring to write them all down...
Small-step rules for commands

- Let’s define contexts, to get that out of the way
 - $C ::= \emptyset | \text{X:=C} | C;c1 | \text{if C then c0 else c1} | \text{while C do c}$
- Now the rules (plus the context rule):

<table>
<thead>
<tr>
<th>Rule</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \text{X:=n, } \sigma \rangle$</td>
<td>\rightarrow_1 $\langle \text{skip, } \sigma[x\mapsto n] \rangle$</td>
</tr>
<tr>
<td>$\langle \text{skip; c1, } \sigma \rangle$</td>
<td>\rightarrow_1 $\langle \text{c1, } \sigma \rangle$</td>
</tr>
<tr>
<td>$\langle \text{if true then c0 else c1, } \sigma \rangle$</td>
<td>\rightarrow_1 $\langle \text{c0, } \sigma \rangle$</td>
</tr>
<tr>
<td>$\langle \text{if false then c0 else c1, } \sigma \rangle$</td>
<td>\rightarrow_1 $\langle \text{c1, } \sigma \rangle$</td>
</tr>
<tr>
<td>$\langle \text{while } b \text{ do } c, \sigma \rangle$</td>
<td>\rightarrow_1</td>
</tr>
<tr>
<td>$\langle \text{if b then (c; while b do c) else skip, } \sigma \rangle$</td>
<td></td>
</tr>
</tbody>
</table>
Lambda calculus

• $e ::= x \mid \lambda x. e \mid e \ e$

• Recall
 ▪ Scope of λ extends as far to the right as possible
 - $\lambda x. \lambda y. x \ y$ is $\lambda x. (\lambda y. (x \ y))$
 ▪ Function application is left-associative
 - $x \ y \ z$ is $(x \ y) \ z$
 ▪ Beta-reduction takes a single step of evaluation
 - $(\lambda x. e_1) \ e_2 \rightarrow e_1[e_2/x]$
A nonderministic semantics

\[
(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x] \\
\]

\[
e \rightarrow e' \\
(\lambda x.e) \rightarrow (\lambda x.e')
\]

\[
e_1 \rightarrow e_1' \\
e_1 e_2 \rightarrow e_1' e_2
\]

\[
e_2 \rightarrow e_2' \\
e_1 e_2 \rightarrow e_1 e_2'
\]

- Why are these semantics non-deterministic?
...with context rules

- \(C ::= \square | \lambda x.C | C \ e | e \ C \)

\[
\begin{align*}
e & \rightarrow e' \\
C[e] & \rightarrow C[e']
\end{align*}
\]

\[
(\lambda x.e1) \ e2 \rightarrow e1[e2\backslash x]
\]
The Church-Rosser Theorem

• If $a \rightarrow^* b$ and $a \rightarrow^* c$, there there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

• Church-Rosser is also called confluence
Normal Form

- A term is in *normal form* if it cannot be reduced
 - Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

- By Church-Rosser Theorem, every term reduces to at most one normal form
 - Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

- Notice that for our application rule, the argument need not be in normal form
Not Every Term Has a Normal Form

• Consider
 - $\Delta = \lambda x. x x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots$

• In general, *self application* leads to loops
 - ...which is where the Y combinator comes from (see 330)
Our non-deterministic reduction rule is fine in theory, but awkward to implement.

Two deterministic strategies:

- **Lazy**: Given \((\lambda x. e_1) \ e_2\), do not evaluate \(e_2\) if \(e_1\) does not “need” \(x\)
 - Also called left-most, **call-by-name (c.b.n.)**, call-by-need, applicative, normal-order (with slightly different meanings)

- **Eager**: Given \((\lambda x. e_1) \ e_2\), always evaluate \(e_2\) fully before applying the function
 - Also called **call-by-value (c.b.v.)**
C.b.n. small-step semantics

- $e ::= x \mid \lambda x.e \mid e \ e$

\[
\begin{align*}
(\lambda x.e1) \ e2 & \rightarrow e1[e2/x] \\
\hline
\end{align*}
\]

\[
\begin{align*}
e1 \rightarrow e1' \\
e1 \ e2 & \rightarrow e1' \ e2
\end{align*}
\]

- Must evaluate function position until we get to a lambda
- Apply as soon as we know what fn we’re applying
- Do not evaluate “under” and lambda
- Do not evaluate the argument

- In context form:
 - $C ::= \square \mid C \ e$
C.b.v. small-step semantics

- $e ::= x \mid v \mid e \ e$
- $v ::= \lambda x.e$

$(\lambda x.e) \ v \rightarrow e[v/x]$

- Must evaluate function position until we get to a lambda
- Evaluate function posn *before* argument posn
 - Not important here, but matters if we add side effects
- Do not evaluate “under” and lambda
- Argument must be fully evaluated before the call

- In context form:
 - $C ::= □ \mid C \ e \mid v \ C$
C.b.n. versus c.b.v. in theory

• Call-by-name is *normalizing*
 - If a is closed and there is a normal form b such that $a \rightarrow^* b$ under the non-deterministic semantics, then $a \rightarrow^* d$ for some d under c.b.n. semantics

• Call-by-value is not!
 - There are some programs that terminate under call-by-name but not under call-by-value
 - E.g., $(\lambda x. (\lambda y . y)) (\Delta \Delta)$
 - Where $\Delta = \lambda x . x \ x$
 - The non-terminating argument $(\Delta \Delta)$ is discarded under c.b.n., but c.b.v. attempts to evaluate it
C.b.n. vs. c.b.v. in practice

• Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell

• Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)