CMSC 430
Introduction to Compilers
Fall 2015

Optimization
Introduction

• An *optimization* is a transformation “expected” to
 - Improve running time
 - Reduce memory requirements
 - Decrease code size

• No guarantees with optimizers
 - Produces “improved,” not “optimal” code
 - Can sometimes produce worse code
Why are optimizers needed?

• Reduce programmer effort
 - Don’t make programmers waste time doing simple opts

• Allow programmer to use high-level abstractions without penalty
 - E.g., convert dynamic dispatch to direct calls

• Maintain performance portability
 - Allow programmer to write code that runs efficiently everywhere
 - Particularly a challenge with GPU code
Two laws and a measurement

• Moore’s law
 - Chip density doubles every 18 months
 - Until now, has meant CPU speed doubled every 18 months
 - These days, moving to multicore instead

• Proebsting’s Law
 - Compiler technology doubles CPU power every 18 years
 - Difference between optimizing and non-optimizing compiler about 4x
 - Assume compiler technology represents 36 years of progress

• Worse: runtime performance swings of up to 10% can be expected with no changes to executable
 - http://dl.acm.org/citation.cfm?id=1508275
Dimensions of optimization

- Representation to be optimized
 - Source code/AST
 - IR/bytecode
 - Machine code

- Types of optimization
 - Peephole — across a few instructions (often, machine code)
 - Local — within basic block
 - Global — across basic blocks
 - Interprocedural — across functions
Dimensions of optimization (cont’d)

- **Machine-independent**
 - Remove extra computations
 - Simplify control structures
 - Move code to less frequently executed place
 - Specialize general purpose code
 - Remove dead/useless code
 - Enable other optimizations

- **Machine-dependent**
 - Replace complex operations with simpler/faster ones
 - Exploit special instructions (MMX)
 - Exploit memory hierarchy (registers, cache, etc)
 - Exploit parallelism (ILP, VLIW, etc)
Selecting optimizations

• Three main considerations
 ■ Safety — will optimizer maintain semantics?
 - Tricky for languages with partially undefined semantics!
 ■ Profitability — will optimization improve code?
 ■ Opportunity — could optimization often enough to make it worth implementing?

• Optimizations interact!
 ■ Some optimizations enable other optimizations
 - E.g., constant folding enables copy propagation
 ■ Some optimizations block other optimizations
Some classical optimizations

• Dead code elimination

 jmp L
 /* unreachable */

 if true then
 ...
 else
 /* unreachable */

 a = 5 /* dead */
 a = 6

 jmp L
 /* unreachable */

 L: ...

 jmp M
 /* unreachable */

 M: ...

 L: goto M

 M: ...

• Also, unreachable functions or methods

• Control-flow simplification

 Remove jumps to jumps
More classical optimizations

- Algebraic simplification
 - Be sure simplifications apply to modular arithmetic

- Constant folding
 - Pre-compute expressions involving only constants

- Special handling for idioms
 - Replace multiplication by shifting
 - May need constant folding to enable sometimes
More classical optimizations

• Common subexpression elimination

\[
\begin{align*}
a &= b + c \\
d &= b + c
\end{align*}
\]

\[
\begin{align*}
a &= b + c \\
d &= a
\end{align*}
\]

• Copy propagation

\[
\begin{align*}
b &= a \\
c &= b \\
/* b dead */
\end{align*}
\]

\[
\begin{align*}
b &= a \\
c &= a \\
/* b dead */
\end{align*}
\]

\[
\begin{align*}
c &= a
\end{align*}
\]

dead code elim
Example

Fortran (!) source code:

```
  sum = 0
  do 10 i = 1, n
  10 sum = sum + a(i) * a(i)
```

Three-address code

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15. sum = 0

init for loop and check limit

a[i]
a[i]
a[i] * a[i]
increment sum

Incr. loop counter back to loop check
Control-flow graph

1. sum = 0
2. i = 1

3. if i > n goto 15

4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3

15.
Common subexpression elimination

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]

7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6

10a. t7 = t3 * t3
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.
Copy propagation

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
11. t8 = sum + t7
12. sum = t8
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
Strength reduction

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
3. if i > n goto 15
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3
15.
1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i * 4 \)
2c. \(t9 = n * 4 \)
3. \(\text{if } i > n \text{ goto 15} \)
3a. \(\text{if } t2 > t9 \text{ goto 15} \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 * t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
13. \(i = i + 1 \)
14. goto 3a
15.
1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3a
15.
1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
2d. t2 = 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
14. goto 3a
15.
1. \(\text{sum} = 0 \)

2. \(i = 1 \)

2a. \(t1 = \text{addr}(a) - 4 \)

2d. \(t2 = 4 \)

2c. \(t9 = n \times 4 \)

3a. \(\text{if } t2 > t9 \text{ goto 15} \)

6. \(t3 = t1[t2] \)

10a. \(t7 = t3 \times t3 \)

12a. \(\text{sum} = \text{sum} + t7 \)

12b. \(t2 = t2 + 4 \)

14. \(\text{goto 3a} \)

15.

Dead code elimination
Final optimized code

1. sum = 0
2. \(t1 = \text{addr}(a) - 4 \)
3. \(t2 = 4 \)
4. \(t4 = n * 4 \)
5. if \(t2 > t4 \) goto 11
6. \(t3 = t1[t2] \)
7. \(t5 = t3 * t3 \)
8. \(\text{sum} = \text{sum} + t5 \)
9. \(t2 = t2 + 4 \)
10. goto 5
11.

unoptimized: 8 temps, 11 stmts in innermost loop
optimized: 5 temps, 5 stmts in innermost loop

1 index addressing
1 multiplication
2 additions
1 jump
1 test

2 index addressing
3 multiplications
2 additions & 2 subtractions
1 jump
1 test
1 copy
1. sum = 0
2. t1 = addr[a] - 4
3. t2 = 4
4. t4 = 4 * n
5. if t2 > t4 goto 11
6. t3 = t1[t2]
7. t5 = t3 * t3
8. sum = sum + t5
9. t2 = t2 + 4
10. goto 5
11. F

CFG of final optimized code
n = 1; k = 0; m = 3;

read x;

while (n < 10) {
 if (2 + x \geq 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}

General code motion
General code motion (cont’d)

1. n = 1; 2. k = 0; 3. m = 3;

4. read x;

5. while (n < 10) {

6. if (2 * x ≥ 5) 7. k := 5;

8. if (3 + k == 3) 9. m := m + 2;

10. n = n + k + m;

11. }

Invariant within loop and therefore moveable
Unaffected by definitions in loop and guarded by invariant condition
Moveable after we move statements 6 and 7
Not moveable because may use def of m from statement 9 on previous iteration
n = 1; k = 0; m = 3;
read x;
while (n < 10) {
 if (2 * x ≥ 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}

n = 1; k = 0; m = 3;
read x;
if (2 * x ≥ 5) k = 5;
t1 = (3 + k == 3);
while (n < 10) {
 if (t1) m = m + 2;
 n = n + k + m;
}
Code specialization

\[
\begin{align*}
n &= 1; \quad k = 0; \quad m = 3; \\
\text{read } x; \\
\text{if } (2 \times x \geq 5) \quad k := 5; \\
t1 &= (3 + k == 3); \\
\text{if } (t1) \\
&\quad \text{while } (n < 10) \{ \\
&\quad \quad m = m + 2; \\
&\quad \quad n = n + k + m; \\
&\quad \} \\
\text{else} \\
&\quad \text{while } (n < 10) \\
&\quad \quad n = n + k + m;
\end{align*}
\]

Specialization of while loop depending on value of \(t1 \)
(Global) common subexpr elim

\[z = a \times b \]
\[r = 2 \times z \]
\[q = a \times b \]
\[u = a \times b \]
\[z = u / 2 \]
\[w = a \times b \]

Can be eliminated since \(a \times b \) is available, i.e., calculated on all paths to this point.

Cannot be eliminated since \(a \times b \) is not available on all paths reaching this point.
Ensure \(a*b \) is assigned to the same variable \(t \) so it can be used for the assignment to \(u \).
Copy propagation

We can then forward substitute t for z...
Dead code elimination

...and eliminate the assignment to z since it is now dead code.
What else can we do?
Partial redundancy elimination

We can compute $a \times b$ on paths where it is not available…

Then eliminate the now fully redundant computation of $a \times b$