Multiword Expressions & Semantic Roles

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT
marine@cs.umd.edu
• Q: what is understanding meaning?
• A: predicting relations between words (similarity, entailment, synonymy, hypernymy ...)

Approaches:
• Learn from raw text vs. thesaurus/wordnet
• Supervised vs. unsupervised
Today

- From word meaning to sentence meaning
 - Semantic Role Labeling [Textbook: 20.9]

- When minimal unit of analysis are not words
 - Multiword Expressions [Not in Textbook]
SEMANTIC ROLE LABELING

Slides Credit: William Cohen, Scott Yih, Kristina Toutanova
Yesterday, Kristina hit Scott with a baseball

Scott was hit by Kristina yesterday with a baseball

Yesterday, Scott was hit with a baseball by Kristina

With a baseball, Kristina hit Scott yesterday

Yesterday Scott was hit by Kristina with a baseball

Kristina hit Scott with a baseball yesterday
Syntactic Variations

Kristina hit Scott with a baseball yesterday

With a baseball, Kristina hit Scott yesterday
Semantic Role Labeling – Giving Semantic Labels to Phrases

• \([\text{AGENT John}] \text{ broke} \ [\text{THEME the window}]\)

• \([\text{THEME The window}] \text{ broke}\)

• \([\text{AGENT Sotheby’s]} \text{ .. offered} \ [\text{RECIPIENT the Dorrance heirs}] \ [\text{THEME a money-back guarantee}]\)

• \([\text{AGENT Sotheby’s}] \text{ offered} \ [\text{THEME a money-back guarantee}] \text{ to} \ [\text{RECIPIENT the Dorrance heirs}]\)

• \([\text{THEME a money-back guarantee}] \text{ offered} \text{ by} \ [\text{AGENT Sotheby’s}]\)

• \([\text{RECIPIENT the Dorrance heirs}] \text{ will} \ [\text{ARM-NEG not}] \text{ be offered} \ [\text{THEME a money-back guarantee}]\)
Why is SRL Important – Applications

• Question Answering
 – Q: When was Napoleon defeated?
 – Look for: [PATIENT Napoleon] [PRED defeat-synset] [ARGM-TMP *ANS*]

• Machine Translation
 English (SVO) Farsi (SOV)
 [AGENT The little boy] [AGENT pesar koocholo] boy-little
 [PRED kicked] [THEME toop germezi] ball-red
 [THEME the red ball] [ARGM-MNR moqtam] hard-adverb
 [ARGM-MNR hard] [PRED zaad-e] hit-past

• Document Summarization
 – Predicates and Heads of Roles summarize content

• Information Extraction
 – SRL can be used to construct useful rules for IE
SRL: REPRESENTATIONS & RESOURCES
FrameNet [Fillmore et al. 01]

Frame: Hit_target
(hit, pick off, shoot)

Lexical units (LUs):
Words that evoke the frame (usually verbs)

Frame elements (FEs):
The involved semantic roles

[Agent Kristina] hit [Target Scott] [Instrument with a baseball] [Time yesterday].
Methodology for FrameNet

1. Define a frame (e.g. DRIVING)
2. Find some sentences for that frame
3. Annotate them

- Corpora
 - FrameNet I – British National Corpus only
 - FrameNet II – LDC North American Newswire corpora

- Size
 - >8,900 lexical units, >625 frames, >135,000 sentences

http://framenet.icsi.berkeley.edu
Proposition Bank (PropBank) [Palmer et al. 05]

• Transfer sentences to propositions
 – Kristina hit Scott \rightarrow hit(Kristina, Scott)

• Penn TreeBank \rightarrow PropBank
 – Add a semantic layer on Penn TreeBank
 – Define a set of semantic roles for each verb
 – Each verb’s roles are numbered

…[A0 the company] to … offer [A1 a 15% to 20% stake] [A2 to the public]
…[A0 Sotheby’s] … offered [A2 the Dorrance heirs] [A1 a money-back guarantee]
…[A1 an amendment] offered [A0 by Rep. Peter DeFazio] …
…[A2 Subcontractors] will be offered [A1 a settlement] …
Proposition Bank (PropBank)
Define the Set of Semantic Roles

• It’s difficult to define a general set of semantic roles for all types of predicates (verbs).
• PropBank defines semantic roles for each verb and sense in the frame files.
• The (core) arguments are labeled by numbers.
 – A0 – Agent; A1 – Patient or Theme
 – Other arguments – no consistent generalizations
• Adjunct-like arguments – *universal* to all verbs
 – AM-LOC, TMP, EXT, CAU, DIR, PNC, ADV, MNR, NEG, MOD, DIS
Proposition Bank (PropBank) Frame Files

- **hit.01 “strike”**
 - A0: agent, hitter; A1: thing hit;
 - A2: instrument, thing hit by or with
 - \[\text{\textit{Kristina}} \text{hit} \text{\textit{Scott}} \text{\textit{with a baseball}} \text{yesterday}.\]

- **look.02 “seeming”**
 - A0: seemer; A1: seemed like; A2: seemed to
 - \[\text{\textit{It}} \text{looked} \text{\textit{to her}} \text{like} \text{\textit{he deserved this}}.\]

- **deserve.01 “deserve”**
 - A0: deserving entity; A1: thing deserved;
 - A2: in-exchange-for
 - \textit{It looked to her like } \text{\textit{he}} \text{\textit{deserved} \textit{this}}.
FrameNet vs PropBank

FrameNet Annotation:

[Buyer Chuck] bought [Goods a car] [Seller from Jerry] [Payment for $1000].

PropBank Annotation:

[Arg0 Chuck] bought [Arg1 a car] [Arg2 from Jerry] [Arg3 for $1000].

[Arg0 Jerry] sold [Arg1 a car] [Arg2 to Chuck] [Arg3 for $1000].
FrameNet vs PropBank -2

FRAMENET ANNOTATION:

[Goods A car] was bought [Buyer by Chuck].

[Goods A car] was sold [Buyer to Chuck] [Seller by Jerry].

[Buyer Chuck] was sold [Goods a car] [Seller by Jerry].

PROPBNANK ANNOTATION:

[Arg1 A car] was bought [Arg0 by Chuck].

[Arg1 A car] was sold [Arg2 to Chuck] [Arg0 by Jerry].

[Arg2 Chuck] was sold [Arg1 a car] [Arg0 by Jerry].
Kristina hit Scott with a baseball yesterday.

\[
[A_0 \text{Kristina}] \text{hit} [A_1 \text{Scott}] [A_2 \text{with a baseball}] [\text{AM-TMP yesterday}].
\]
Proposition Bank (PropBank) Statistics

• Proposition Bank I
 – Verb Lexicon: 3,324 frame files
 – Annotation: ~113,000 propositions
 http://www.cis.upenn.edu/~mpalmer/project_pages/ACE.htm

• Alternative format: CoNLL-04,05 shared task
 – Represented in table format
 – Has been used as standard data set for the shared tasks on semantic role labeling
 http://www.lsi.upc.es/~srlconll/soft.html
SRL: TASKS & SYSTEMS
Semantic Role Labeling: Subtasks

- **Identification**
 - Very hard task: to separate the argument substrings from the rest in this exponentially sized set
 - Usually only 1 to 9 (avg. 2.7) substrings have labels ARG and the rest have NONE for a predicate

- **Classification**
 - Given the set of substrings that have an ARG label, decide the exact semantic label

- **Core argument** semantic role labeling: (easier)
 - Label phrases with core argument labels only. The modifier arguments are assumed to have label NONE.
Evaluation Measures

Correct: \([_{A0} \text{The queen}] \text{ broke} \ [_{A1} \text{the window}] \ [_{AM-TMP} \text{yesterday}]\)
Guess: \([_{A0} \text{The queen}] \text{ broke the} \ [_{A1} \text{ window}] \ [_{AM-LOC} \text{yesterday}]\)

<table>
<thead>
<tr>
<th>Correct</th>
<th>Guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>{The queen} \rightarrow A0</td>
<td>{The queen} \rightarrow A0</td>
</tr>
<tr>
<td>{the window} \rightarrow A1</td>
<td>{window} \rightarrow A1</td>
</tr>
<tr>
<td>{yesterday} \rightarrow AM-TMP</td>
<td>{yesterday} \rightarrow AM-LOC</td>
</tr>
<tr>
<td>all other \rightarrow NONE</td>
<td>all other \rightarrow NONE</td>
</tr>
</tbody>
</table>

- Precision, Recall, F-Measure
- Measures for subtasks
 - Identification (Precision, Recall, F-measure)
 - Classification (Accuracy)
 - Core arguments (Precision, Recall, F-measure)
What information can we use for Semantic Role Labeling?

- Syntactic Parsers

- Shallow parsers

- Semantic ontologies (WordNet, automatically derived), and named entity classes

 (v) **hit** (cause to move by striking)

 WordNet hyponymph:

 ![propel, impel](cause to move forward with force)
Arguments often correspond to syntactic constituents!

Most commonly, substrings that have argument labels correspond to syntactic constituents

- In Propbank, an argument phrase corresponds to exactly one parse tree constituent in the correct parse tree for 95.7% of the arguments;
- In Propbank, an argument phrase corresponds to exactly one parse tree constituent in Charniak’s automatic parse tree for approx 90.0% of the arguments.
- In FrameNet, an argument phrase corresponds to exactly one parse tree constituent in Collins’ automatic parse tree for 87% of the arguments.
Labeling Parse Tree Nodes

• Given a parse tree t, label the nodes (phrases) in the tree with semantic labels
• To deal with discontiguous arguments
 – In a post-processing step, join some phrases using simple rules
 – Use a more powerful labeling scheme, i.e. C-A0 for continuation of A0
Combining Identification and Classification Models

Step 1. Pruning.
Using a hand-specified filter.

Step 2. Identification.
Identification model (filters out candidates with high probability of NONE)

Step 3. Classification.
Classification model assigns one of the argument labels to selected nodes (or sometimes possibly NONE)
Combining Identification and Classification Models

\[
\neg P(l|c, t, p) = P_{ID}(Id(l)|\Phi(c, t, p)) \ast P_{CLS}(l|Id(l), \Phi(c, t, p)) \\
\text{or} \\
\neg P(l|c, t, p) = P(l|\Phi(c, t, p))
\]

One Step. Simultaneously identify and classify using \(P(l|c, t, p) \)
Gildea & Jurafsky (2002) Features

• Key early work
 – Future systems use these features as a baseline

• Constituent Independent
 – Target predicate (lemma)
 – Voice
 – Subcategorization

• Constituent Specific
 – Path
 – Position (left, right)
 – Phrase Type
 – Governing Category (S or VP)
 – Head Word

```
She                     broke       the      expensive  vase
PRP  VBD  DT  JJ  NN

S
NP
VP
NP

Target     broke
Voice      active
Subcategorization VP→VBD NP
Path       VBD↑VP↑S↓NP
Position    left
Phrase Type NP
Gov Cat     S
Head Word   She
```
Performance with Baseline Features using the G&J Model

• Features combined using a linear classifier

FrameNet Results

Propbank Results
Improving performance with better learning + better features

• Better Machine Learning: 67.6 → 80.8 using SVMs [Pradhan et al. 04])

• Better features
 ▪ Head Word and Content Word POS tags
 ▪ **NE labels (Organization, Location, etc.)**
 ▪ Structural/lexical context
 ▪ Head of PP Parent
 ▪ If the parent of a constituent is a PP, the identity of the preposition
Pradhan et al. (2004) Features

• More (31% error reduction from baseline due to these + Surdeanu et al. features)
Joint Scoring: Enforcing Hard Constraints

• **Constraint 1: Argument phrases do not overlap**

 By \([A_1 \text{ working } A_1 \text{ hard }], \text{ he} \text{ said}, \text{ you can achieve a lot.}\)

 – Pradhan et al. (04) – greedy search for a best set of non-overlapping arguments

 – Toutanova et al. (05) – exact search for the best set of non-overlapping arguments (dynamic programming, linear in the size of the tree)

 – Punyakanok et al. (05) – exact search for best non-overlapping arguments using integer linear programming

• **Other constraints** ([Punyakanok et al. 04, 05])

 – no repeated core arguments (good heuristic)

 – phrases do not overlap the predicate

 – *(more later)*
There are many statistical tendencies for the sequence of roles and their syntactic realizations
- When both are before the verb, AM-TMP is usually before A0
- Usually, there aren’t multiple temporal modifiers
- Many others which can be learned automatically
Per Argument Performance
CoNLL-05 Results on WSJ-Test

• Core Arguments (Freq. ~70%)

<table>
<thead>
<tr>
<th></th>
<th>Best (F_1)</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>88.31</td>
<td>25.58%</td>
</tr>
<tr>
<td>A1</td>
<td>79.91</td>
<td>35.36%</td>
</tr>
<tr>
<td>A2</td>
<td>70.26</td>
<td>8.26%</td>
</tr>
<tr>
<td>A3</td>
<td>65.26</td>
<td>1.39%</td>
</tr>
<tr>
<td>A4</td>
<td>77.25</td>
<td>1.09%</td>
</tr>
</tbody>
</table>

• Adjuncts (Freq. ~30%)

<table>
<thead>
<tr>
<th></th>
<th>Best (F_1)</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP</td>
<td>78.21</td>
<td>6.86%</td>
</tr>
<tr>
<td>ADV</td>
<td>59.73</td>
<td>3.46%</td>
</tr>
<tr>
<td>DIS</td>
<td>80.45</td>
<td>2.05%</td>
</tr>
<tr>
<td>MNR</td>
<td>59.22</td>
<td>2.67%</td>
</tr>
<tr>
<td>LOC</td>
<td>60.99</td>
<td>2.48%</td>
</tr>
<tr>
<td>MOD</td>
<td>98.47</td>
<td>3.83%</td>
</tr>
<tr>
<td>CAU</td>
<td>64.62</td>
<td>0.50%</td>
</tr>
<tr>
<td>NEG</td>
<td>98.91</td>
<td>1.36%</td>
</tr>
</tbody>
</table>

Data from Carreras&Màrquez’s slides (CoNLL 2005)
What are Multi Word Expressions?

– Decomposable into multiple words

– Lexically, syntactically, semantically, pragmatically and/or statistically idiosyncratic
Some examples

San Francisco
ad hoc
by and large
part of speech
take a walk
take advantage of
call (someone) up
Why do we care?

• MWEs are pervasive
 – Estimated to be equivalent in number to simplex words in mental lexicon

• MWEs are a challenge to NLP systems
MWE or not MWE?

“there is no unified phenomenon to describe but rather a complex of features that interact in various, often untidy, ways and represent a broad continuum between non-compositional (or idiomatic) and compositional groups of words.”

[Moon 1998]
Indicators of MWE-thood

• Institutionalization/conventionalization

• Lexicogrammatical fixedness:
 – Formal rigidity, preferred lexical realization, restrictions on voice, etc

Fixed MWE: kick the bucket
Non-fixed MWE: keep tabs on
Indicators of MWE-hood

• Semantic non-compositionality
 – Mismatch between semantics of the parts and the whole
 Kick the bucket (but also: At first)

• Syntactic irregularity
 – all of a sudden, the be all and end all of
 – (but also: kick the bucket, fly off the handle)
Indicators of MWE-hood

• Non-identifiability: meaning cannot be predicted from surface form
 – kick the bucket, fly off the handle
 – (but also: wide awake, plain truth)
Indicators of MWE-hood

• Situatedness: expression situated with a fixed pragmatic point
 – Good morning, all aboard
 – But also: first off

• Figuration: expression encodes some metaphor, metonymy, hyperbole
 – Figurative expressions: bull market
 – Non figurative expressions: first off
Indicators of MWE-hood

• Single-word paraphrasability: the expression has a single word paraphrase
 – Leave out = omit
 – (but also: look up)

• Informality:
 – Expression associated with more informal or colloquial registers

• Affect
 – Expression encodes a certain evaluation of affective stance toward the thing it denotes
Indicators of MWE-hood

• Substitutability: MWEs stand in opposition to anti-collocations
 – Expressions derived through synonym/word order substitution which occur with markedly lower frequency than the MWE

many thanks
*several thanks
*many gratitudes
Concept of “Multiword”

• ~ a lexeme that crosses word boundaries

• Complications
 – non-segmenting languages
 – Languages without a pre-existing writing system

• But there is fuzziness even in English
 – Houseboat vs. house boat
 – Trade off vs. trade-off vs. tradeoff
<table>
<thead>
<tr>
<th>Expression</th>
<th>MWE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>library card</td>
<td></td>
</tr>
<tr>
<td>at arm’s length</td>
<td></td>
</tr>
<tr>
<td>old tree</td>
<td></td>
</tr>
<tr>
<td>foreign direct investment</td>
<td></td>
</tr>
<tr>
<td>the sun</td>
<td></td>
</tr>
<tr>
<td>at [nine] o’clock</td>
<td></td>
</tr>
<tr>
<td>to go bush</td>
<td></td>
</tr>
<tr>
<td>give a demo</td>
<td></td>
</tr>
<tr>
<td>kick the bucket</td>
<td></td>
</tr>
<tr>
<td>once upon a time</td>
<td></td>
</tr>
<tr>
<td>at home</td>
<td></td>
</tr>
<tr>
<td>in the meantime</td>
<td></td>
</tr>
<tr>
<td>to read Shakespeare</td>
<td></td>
</tr>
</tbody>
</table>
MWEs vs. Collocations

• A collocation is an arbitrary and recurrent word combination

• Tends to be compositional (e.g., strong coffee)

• Generally contiguous word sequences (often bigrams)
Brainstorming Exercise

How can we identify MWEs automatically?
Today

• From word meaning to sentence meaning
 • Semantic Role Labeling [Textbook: 20.9]

• When minimal unit of analysis are not words
 • Multiword Expressions [Not in Textbook]