CMSC 430
Introduction to Compilers
Fall 2016

Lexing and Parsing
Overview

• Compilers are roughly divided into two parts
 ▪ Front-end — deals with surface syntax of the language
 ▪ Back-end — analysis and code generation of the output of the front-end

• Lexing and Parsing translate source code into form more amenable for analysis and code generation

• Front-end also may include certain kinds of semantic analysis, such as symbol table construction, type checking, type inference, etc.
Lexing vs. Parsing

• Language grammars usually split into two levels
 ▪ Tokens — the “words” that make up “parts of speech”
 - Ex: Identifier [a-zA-Z_]+
 - Ex: Number [0-9]+
 ▪ Programs, types, statements, expressions, declarations, definitions, etc — the “phrases” of the language
 - Ex: if (expr) expr;
 - Ex: def id(id, ..., id) expr end

• Tokens are identified by the lexer
 ▪ Regular expressions

• Everything else is done by the parser
 ▪ Uses grammar in which tokens are primitives
 ▪ Implementations can look inside tokens where needed
Lexing vs. Parsing (cont’d)

• Lexing and parsing often produce abstract syntax tree as a result
 ▪ For efficiency, some compilers go further, and directly generate intermediate representations

• Why separate lexing and parsing from the rest of the compiler?

• Why separate lexing and parsing from each other?
Parsing theory

• Goal of parsing: Discovering a parse tree (or derivation) from a sentence, or deciding there is no such parse tree

• There’s an alphabet soup of parsers
 - Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser
 - Can parse any context-free grammar (but inefficient)
 - LL(k)
 - top-down, parses input left-to-right (first L), produces a leftmost derivation (second L), k characters of lookahead
 - LR(k)
 - bottom-up, parses input left-to-right (L), produces a rightmost derivation (R), k characters of lookahead

• We will study only some of this theory
 - But we’ll start more concretely
Parsing practice

• Yacc and lex — most common ways to write parsers
 ▪ yacc = “yet another compiler compiler” (but it makes parsers)
 ▪ lex = lexical analyzer (makes lexers/tokenizers)

• These are available for most languages
 ▪ bison/flex — GNU versions for C/C++
 ▪ ocamlyacc/ocamllex — what we’ll use in this class
Example: Arithmetic expressions

- High-level grammar:
 - $E \rightarrow E + E \mid n \mid (E)$

- What should the tokens be?
 - Typically they are the terminals in the grammar
 - $\{+, (,), n\}$
 - Notice that n itself represents a set of values
 - Lexers use *regular expressions* to define tokens
 - But what will a typical input actually look like?
 - We probably want to allow for whitespace
 - Notice not included in high-level grammar: lexer can discard it
 - Also need to know when we reach the end of the file
 - The parser needs to know when to stop
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
    regexp_1 { action_1 }
    | ...
    | regexp_n { action_n }
and ...
{ trailer }
```

- Compiled to .ml output file
 - `header` and `trailer` are inlined into output file as-is
 - `regexps` are combined to form one (big!) finite automaton that recognizes the union of the regular expressions
 - Finds *longest* possible match in the case of multiple matches
 - Generated regexp matching function is called `entrypoint`
Lexing with ocamllex (.mll)

```
(* Slightly simplified format *)
{ header }
rule entrypoint = parse
    regexp_1 { action_1 }  
    | ...   
    | regexp_n { action_n } 
and ...
{ trailer }
```

- When match occurs, generated `entrypoint` function returns value in corresponding action
 - If we are lexing for `ocamlyacc`, then we’ll return tokens that are defined in the `ocamlyacc` input grammar
Example

```
{ open Ex1_parser
  exception Eof
}
rule token = parse
  [' ' '	' '
']     { token lexbuf }  (* skip blanks *)
| ['\n']             { EOL }
| ['0'-'9']+ as lxm   { INT(int_of_string lxm) }
| '+'                 { PLUS }
| '('                 { LPAREN }
| ')'                 { RPAREN }
| eof                 { raise Eof }

(* token definition from Ex1_parser *)
type token =
  | INT of (int)
  | EOL
  | PLUS
  | LPAREN
  | RPAREN
```
Generated code

• You don’t need to understand the generated code
 ▪ But you should understand it’s not magic
• Uses Lexing module from OCaml standard lib
• Notice that token rule was compiled to token fn
 ▪ Mysterious lexbuf from before is the argument to token
 ▪ Type can be examined in Lexing module ocamldoc
Lexer limitations

- Automata limited to 32767 states
 - Can be a problem for languages with lots of keywords

```
rule token = parse
  "keyword_1"   { ... }
| "keyword_2"   { ... }
| ...
| "keyword_n"   { ... }
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
  { IDENT id}
```

- Solution?
• Now we can build a parser that works with lexemes (tokens) from *token.mll*
 - Recall from 330 that parsers work by consuming one character at a time off input while building up parse tree
 - Now the input stream will be tokens, rather than chars
 - Notice parser doesn’t need to worry about whitespace, deciding what’s an *INT*, etc
Suitability of Grammar

• Problem: our grammar is ambiguous
 ■ $E \rightarrow E + E \mid n \mid (E)$
 ■ Exercise: find an input that shows ambiguity

• There are parsing technologies that can work with ambiguous grammars
 ■ But they’ll provide multiple parses for ambiguous strings, which is probably not what we want

• Solution: remove ambiguity
 ■ One way to do this from 330:
 ■ $E \rightarrow T \mid E + T$
 ■ $T \rightarrow n \mid (E)$
Parsing with ocamlyacc (.mly)

```ml
{%
  header
%
} declarations
%
rules
%
trailer

.ml input

val main :
  (Lexing.lexbuf  -> token) ->
  Lexing.lexbuf -> int

.ml output

• Compiled to .ml and .mli files
  - .mli file defines token type and entry point main for parsing
    - Notice first arg to main is a fn from a lexbuf to a token, i.e., the function generated from a .mll file!
```
Parsing with ocamlyacc (.mly)

```
{%
  header
%
%
declarations
%
rules
%
trailer

(* header *)
type token = ... 
...
let yytables = ...
(* trailer *)
```

.ml input

- .ml file uses Parsing library to do most of the work
 - header and trailer copied direct to output
 - declarations lists tokens and some other stuff
 - rules are the productions of the grammar
 - Compiled to yytables; this is a table-driven parser Also include actions that are executed as parser executes
 - We’ll see an example next
Actions

• In practice, we don’t just want to check whether an input parses; we also want to do something with the result
 ▷ E.g., we might build an AST to be used later in the compiler

• Thus, each production in ocamlyacc is associated with an action that produces a result we want

• Each rule has the format
 ▷ lhs: rhs {act}
 ▷ When parser uses a production lhs → rhs in finding the parse tree, it runs the code in act
 ▷ The code in act can refer to results computed by actions of other non-terminals in rhs, or token values from terminals in rhs
Example

```
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main           /* the entry point */
%type <int> main
%
main:
  | expr EOL              { $1 }        (* 1 *)
expr:
  | term                  { $1 }        (* 2 *)
  | expr PLUS term        { $1 + $3 }   (* 3 *)
term:
  | INT                   { $1 }        (* 4 *)
  | LPAREN expr RPAREN    { $2 }        (* 5 *)
```

• Several kinds of declarations:
 - %token — define a token or tokens used by lexer
 - %start — define start symbol of the grammar
 - %type — specify type of value returned by actions
Actions, in action

<table>
<thead>
<tr>
<th></th>
<th>INT(1)</th>
<th>PLUS</th>
<th>INT(2)</th>
<th>PLUS</th>
<th>LPAREN</th>
<th>INT(3)</th>
<th>PLUS</th>
<th>INT(42)</th>
<th>RPAREN</th>
<th>eof</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>expr[48].$</td>
<td></td>
<td>main[48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

main:

<table>
<thead>
<tr>
<th>expr EOL</th>
<th>{ $1 }</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr:</td>
<td></td>
</tr>
<tr>
<td>term</td>
<td>{ $1 }</td>
</tr>
<tr>
<td>expr PLUS term</td>
<td>{ $1 + $3 }</td>
</tr>
<tr>
<td>term:</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>{ $1 }</td>
</tr>
<tr>
<td>LPAREN expr RPAREN</td>
<td>{ $2 }</td>
</tr>
</tbody>
</table>

- The “.” indicates where we are in the parse
- We’ve skipped several intermediate steps here, to focus only on actions
- (Details next)
Actions, in action

```
main:  
  | expr EOL          { $1 }  
expr:  
  | term             { $1 }       
  | expr PLUS term   { $1 + $3 }  
term:  
  | INT              { $1 }       
  | LPAREN expr RPAREN { $2 }     
```

```
INT(1) PLUS INT(2) PLUS LPAREN INT(3) PLUS INT(42) RPAREN eof
```

```
expr[48]  
  +  
expr[3]  
  +  
term[2]  
  (  
  )  
expr[45]  
  +  
term[42]  
  42  
term[3]  
  3  
term[1]  
  2  
expr[1]  
  +  
term[2]  
  2  
expr[3]  
```
Invoking lexer/parser

```ocaml
try
  let lexbuf = Lexing.from_channel stdin in
  while true do
    let result = Ex1_parser.main Ex1_lexer.token lexbuf in
    print_int result; print_newline(); flush stdout
  done
with Ex1_lexer.Eof ->
  exit 0
```

- Tip: can also use `Lexing.from_string` and `Lexing.from_function`
Terminology review

• Derivation
 ■ A sequence of steps using the productions to go from the start symbol to a string

• Rightmost (leftmost) derivation
 ■ A derivation in which the rightmost (leftmost) nonterminal is rewritten at each step

• Sentential form
 ■ A sequence of terminals and non-terminals derived from the start-symbol of the grammar with 0 or more reductions
 ■ I.e., some intermediate step on the way from the start symbol to a string in the language of the grammar

• Right- (left-)sentential form
 ■ A sentential form from a rightmost (leftmost) derivation

• FIRST(α)
 ■ Set of initial symbols of strings derived from α
Bottom-up parsing

- ocamlyacc builds a bottom-up parser
 - Builds derivation from input back to start symbol
 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

- To reduce \(\gamma_i \) to \(\gamma_{i-1} \)
 - Find production \(A \rightarrow \beta \) where \(\beta \) is in \(\gamma_i \), and replace \(\beta \) with \(A \)

- In terms of parse tree, working from leaves to root
 - Nodes with no parent in a partial tree form its *upper fringe*
 - Since each replacement of \(\beta \) with \(A \) shrinks upper fringe, we call it a reduction.

- Note: need not actually build parse tree
 - \(|\text{parse tree nodes}| = |\text{input}| + |\text{reductions}|\)
Bottom-up parsing, illustrated

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

rule $B \rightarrow \gamma$

$S \Rightarrow^* \alpha \ B \ y \Rightarrow \alpha \ \gamma \ y \Rightarrow^* \ x \ y$

Upper fringe: solid
Yet to be parsed: dashed
Bottom-up parsing, illustrated

LR(1) parsing
- Scan input left-to-right
- Rightmost derivation
- 1 token lookahead

\[S \Rightarrow^* \alpha \rightarrow B \ y \Rightarrow \alpha \gamma \ y \Rightarrow^* x \ y \]

Upper fringe: solid
Yet to be parsed: dashed

rule \(B \rightarrow \gamma \)
Finding reductions

• Consider the following grammar
 1. \(S \rightarrow a\ A\ B\ e \)
 2. \(A \rightarrow A\ b\ c \)
 3. \(|\ b \)
 4. \(B \rightarrow d \)

Input: abbcde

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Production</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbcde</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>aAbcde</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>aAde</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>aABe</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

• How do we find the next reduction?
 • How do we do this efficiently?
Handles

• Goal: Find substring β of tree’s frontier that matches some production $A \rightarrow \beta$
 - (And that occurs in the rightmost derivation)
 - Informally, we call this substring β a handle

• Formally,
 - A *handle* of a right-sentential form γ is a pair $(A \rightarrow \beta, k)$ where
 - $A \rightarrow \beta$ is a production and k is the position in γ of β’s rightmost symbol.
 - If $(A \rightarrow \beta, k)$ is a handle, then replacing β at k with A produces the right sentential form from which γ is derived in the rightmost derivation.
 - Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
 - \Rightarrow the parser doesn’t need to scan past the handle (only lookahead)
Example

- Grammar

1. \(S \rightarrow E \)
2. \(E \rightarrow E + T \)
3. \(E \rightarrow E - T \)
4. \(T \rightarrow T \)
5. \(T \rightarrow T * F \)
6. \(T \rightarrow T / F \)
7. \(F \rightarrow F \)
8. \(F \rightarrow n \)
9. \(F \rightarrow id \)
10. \(F \rightarrow (E) \)

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle (prod,k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1,1</td>
</tr>
<tr>
<td>3</td>
<td>E-T</td>
<td>3,3</td>
</tr>
<tr>
<td>5</td>
<td>E-T*F</td>
<td>5,5</td>
</tr>
<tr>
<td>9</td>
<td>E-T*id</td>
<td>9,5</td>
</tr>
<tr>
<td>7</td>
<td>E-F*id</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>E-n*id</td>
<td>8,3</td>
</tr>
<tr>
<td>4</td>
<td>T-n*id</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>F-n*id</td>
<td>7,1</td>
</tr>
<tr>
<td>9</td>
<td>id-n*id</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Handles for rightmost derivation of \(id-n*id \)
Finding reductions

- Theorem: If G is unambiguous, then every right-sentential form has a unique handle
 - If we can find those handles, we can build a derivation!

- Sketch of Proof:
 - G is unambiguous \Rightarrow rightmost derivation is unique
 - \Rightarrow a unique production $A \rightarrow \beta$ applied to derive γ_i from γ_{i-1}
 - and a unique position k at which $A \rightarrow \beta$ is applied
 - \Rightarrow a unique handle $(A \rightarrow \beta, k)$

- This all follows from the definitions
Bottom-up handle pruning

- *Handle pruning*: discovering handle and reducing it
 - Handle pruning forms the basis for bottom-up parsing
- So, to construct a rightmost derivation
 \[
 S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input}
 \]
- Apply the following simple algorithm

 for i ← n to 1 by −1

 Find handle \((A_i \rightarrow \beta_i, k_i)\) in \(\gamma_i\)

 Replace \(\beta_i\) with \(A_i\) to generate \(\gamma_{i-1}\)

 - This takes \(2n\) steps
Shift-reduce parsing algorithm

- Maintain a stack of terminals and non-terminals matched so far
 - Rightmost terminal/non-terminal on top of stack
 - Since we’re building rightmost derivation, will look at top elements of stack for reductions

```
push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
    if the top of the stack is a handle A → β
        then // reduce β to A
            pop |β| symbols off the stack
            push A onto the stack
    else if (token ≠ EOF)
        then // shift
            push token
            token ← next_token()
    else // need to shift, but out of input
        report an error
```

Potential errors

- Can’t find handle
- Reach end of file
Example

- Grammar
 1. $S \rightarrow E$
 2. $E \rightarrow E + T$
 3. $| E - T$
 4. $| T$
 5. $T \rightarrow T * F$
 6. $| T / F$
 7. $| F$
 8. $F \rightarrow n$
 9. $| id$
 10. $| (E)$

Shift/reduce parse of $id-n*id$

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Handle (prod,k)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>id</td>
<td>-n*id</td>
<td>9,1</td>
<td>reduce 9</td>
</tr>
<tr>
<td>F</td>
<td>-n*id</td>
<td>7,1</td>
<td>reduce 7</td>
</tr>
<tr>
<td>T</td>
<td>-n*id</td>
<td>4,1</td>
<td>reduce 4</td>
</tr>
<tr>
<td>E</td>
<td>-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-n</td>
<td>*id</td>
<td>8,3</td>
<td>reduce 8</td>
</tr>
<tr>
<td>E-F</td>
<td>*id</td>
<td>7,3</td>
<td>reduce 7</td>
</tr>
<tr>
<td>E-T</td>
<td>*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*</td>
<td>id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*id</td>
<td></td>
<td>9,5</td>
<td>reduce 9</td>
</tr>
<tr>
<td>E-T*F</td>
<td></td>
<td>5,5</td>
<td>reduce 5</td>
</tr>
<tr>
<td>E-T</td>
<td></td>
<td>3,3</td>
<td>reduce 3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1,1</td>
<td>reduce 1</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>none</td>
<td>accept</td>
</tr>
</tbody>
</table>

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce
Parse tree for example
Algorithm actions

• Shift-reduce parsers have just four actions
 ■ **Shift** — next word is shifted onto the stack
 ■ **Reduce** — right end of handle is at top of stack
 - Locate left end of handle within the stack
 - Pop handle off stack and push appropriate lhs
 ■ **Accept** — stop parsing and report success
 ■ **Error** — call an error reporting/recovery routine

• Cost of operations
 ■ **Accept** is constant time
 ■ **Shift** is just a push and a call to the scanner
 ■ **Reduce** takes \(|\text{rhs}|\) pops and 1 push
 - If handle-finding requires state, put it in the stack \(\Rightarrow 2x\) work
 ■ **Error** depends on error recovery mechanism
Finding handles

• To be a handle, a substring of sentential form γ must:
 ■ Match the right hand side β of some rule $A \rightarrow \beta$
 ■ There must be some rightmost derivation from the start symbol that produces γ with $A \rightarrow \beta$ as the last production applied
 ■ \Rightarrow Looking for rhs’s that match strings is not good enough

• How can we know when we have found a handle?
 ■ LR(1) parsers use DFA that runs over stack and finds them
 - One token look-ahead determines next action (shift or reduce) in each state of the DFA.
 ■ A grammar is LR(1) if we can build an LR(1) parser for it

• LR(0) parsers: no look-ahead
LR(1) parsing

- Can use a set of tables to describe LR(1) parser

- ocamlyacc automates the process of building the tables
 - Standard library Parser module interprets the tables
- LR parsing invented in 1965 by Donald Knuth
- LALR parsing invented in 1969 by Frank DeRemer
LR(1) parsing algorithm

- Two tables
 - ACTION: reduce/shift/accept
 - GOTO: state to be in after reduce
- Cost
 - |input| shifts
 - |derivation| reductions
 - One accept
- Detects errors by failure to shift, reduce, or accept

```c
stack.push(INVALID); stack.push(s_0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A→β" ) {
        stack.popnum(2*|β|); // pop 2*|β| symbols
        s = stack.top();
        stack.push(A);
        stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift s_i" ) {
        stack.push(token); stack.push(s_i);
        token ← scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept" && token == EOF )
        not_found = false;
    else report a syntax error and recover;
}
report success;
```
Example parser table

- `ocamlyacc -v ex1_parser.mly` — produce `.output` file with parser table

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>goto</th>
<th>productions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s3</td>
<td>s4</td>
<td>acc 6 7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>3</td>
<td>r4</td>
<td></td>
<td>term → INT .</td>
</tr>
<tr>
<td>4</td>
<td>s3</td>
<td>s4</td>
<td>8 7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>6</td>
<td>s9</td>
<td>s10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td></td>
<td>expr → term .</td>
</tr>
<tr>
<td>8</td>
<td>s10</td>
<td>s11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td></td>
<td>main → expr EOL .</td>
</tr>
<tr>
<td>10</td>
<td>s3</td>
<td>s4</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td></td>
<td>term → (expr .)</td>
</tr>
<tr>
<td>12</td>
<td>r3</td>
<td></td>
<td><code>expr → expr + term .</code></td>
</tr>
</tbody>
</table>

NB: Numbers in shift refer to state numbers

Numbers in reduction refer to production numbers
Example parse (N+N+N)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,N,3</td>
<td>+N+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,term,7</td>
<td>+N+N</td>
<td>r2</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+,10</td>
<td>N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+,10,N,3</td>
<td>+N</td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+,10,term,12</td>
<td>+N</td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td>+N</td>
<td>s10</td>
</tr>
<tr>
<td>1,expr,6,+,10</td>
<td>N</td>
<td>s3</td>
</tr>
<tr>
<td>1,expr,6,+,10,N,3</td>
<td></td>
<td>r4</td>
</tr>
<tr>
<td>1,expr,6,+,10,term,12</td>
<td></td>
<td>r3</td>
</tr>
<tr>
<td>1,expr,6</td>
<td></td>
<td>s9</td>
</tr>
<tr>
<td>1,expr,6,EOL,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>accept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example parser table (cont’d)

• Notes
 ■ Notice derivation is built up (bottom to top)
 ■ Table only contains kernel of each state
 - Apply closure operation to see all the productions in the state

• LR(1) parsing requires start symbol not on any rhs
 ■ Thus, ocamlyacc actually adds another production
 - %entry% → \001 main
 - (so the acc in the previous table is a slight fib)

• Values returned from actions stored on the stack
 ■ Reduce triggers computation of action result
Why does this work?

• Stack = upper fringe
 ▪ So all possible handles on top of stack
 ▪ Shift inputs until top elements of stack form a handle

• Build a handle-recognizing DFA
 ▪ Language of handles is regular
 ▪ ACTION and GOTO tables encode the DFA
 - Shift = DFA transition
 - Reduce = DFA accept
 - New state = GOTO[state at top of stack (after pop), lhs]

• If we can build these tables, grammar is LR(1)
LR(k) items

- An *LR(k) item* is a pair \([P, δ]\), where
 - \(P\) is a production \(A → β\) with a \(\cdot\) at some position in the rhs
 - \(δ\) is a lookahead string of length \(≤ k\) (words or $\$
 - The \(\cdot\) in an item indicates the position of the top of the stack
- LR(1):
 - \([A → •βγ,a]\) — input so far consistent with using \(A → βγ\) immediately after symbol on top of stack
 - \([A → β•γ,a]\) — input so far consistent with using \(A → βγ\) at this point in the parse, and parser has already recognized \(β\)
 - \([A → βγ•,a]\) — parser has seen \(βγ\), and lookahead of a consistent with reducing to \(A\)
- LR(1) items represent valid configurations of an LR(1) parser; DFA states are sets of LR(1) items
LR(\(k\)) items, cont’d

- Ex: \(A \rightarrow BCD\) with lookahead a can yield 4 items
 - \([A \rightarrow \cdot BCD, a], [A \rightarrow B \cdot CD, a], [A \rightarrow BC \cdot D, a], [A \rightarrow BCD \cdot, a]\)
 - Notice: set of LR(1) items for a grammar is finite

- Carry lookaheads along to choose correct reduction
 - Lookahead has no direct use in \([A \rightarrow \beta \cdot \gamma, a]\)
 - In \([A \rightarrow \beta \cdot, a]\), a lookahead of \(a \Rightarrow\) reduction by \(A \rightarrow \beta\)
 - For \{ \([A \rightarrow \beta \cdot, a], [B \rightarrow \gamma \cdot \delta, b]\) \}
 - Lookahead of \(a \Rightarrow\) reduce to \(A\)
 - \(FIRST(\delta) \Rightarrow\) shift
 - (else error)
LR(1) table construction

- States of LR(1) parser contain sets of LR(1) items
 - Initial state s0
 - Assume S’ is the start symbol of grammar, does not appear in rhs
 - (Extend grammar if necessary to ensure this)
 - \(s_0 = \text{closure}(\{S' \rightarrow \cdot S, $\}) \) \hspace{1cm} ($ = \text{EOF}$)
 - For each sk and each terminal/non-terminal X, compute new state goto(sk,X)
 - Use closure() to “fill out” kernel of new state
 - If the new state is not already in the collection, add it
 - Record all the transitions created by goto()
 - These become ACTION and GOTO tables
 - i.e., the handle-finding DFA
 - This process eventually reaches a fixpoint
Closure()

- \([A \rightarrow \beta \cdot B \delta, a]\) implies \([B \rightarrow \gamma, x]\) for each production with \(B\) on lhs and each \(x \in \text{FIRST}(\delta a)\)
 - (If you’re about to see a \(B\), you may also see a \(\gamma\))

```
Closure( s )
while ( s is still changing )
  \(\forall\) items \([A \rightarrow \beta \cdot B \delta, a] \in s\)  // item with \(\cdot\) to left of nonterminal \(B\)
  \(\forall\) productions \(B \rightarrow \gamma \in P\)  // all productions for \(B\)
  \(\forall\) \(b \in \text{FIRST}(\delta a)\)  // tokens appearing after \(B\)
  if \([B \rightarrow \cdot \gamma, b] \notin s\)  // form LR(1) item w/ new lookahead
     then add \([B \rightarrow \cdot \gamma, b]\) to s  // add item to \(s\) if new
```

- Classic fixed-point method
- Halts because \(s \subset \text{ITEMS}\) (worklist version is faster)
- Closure “fills out” a state
Example — closure with LR(0)

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T+E \\
| & \quad T \\
T & \rightarrow \text{id}
\end{align*}
\]

- [kernel item]
- [derived item]

\[
\begin{align*}
[S & \rightarrow \bullet E] \\
[E & \rightarrow \bullet T+E] \\
[E & \rightarrow \bullet T] \\
[T & \rightarrow \bullet \text{id}]
\end{align*}
\]

\[
\begin{align*}
[E & \rightarrow T+ \bullet E] \\
[E & \rightarrow \bullet T+E] \\
[E & \rightarrow \bullet T] \\
[T & \rightarrow \bullet \text{id}]
\end{align*}
\]
Example — closure with LR(1)

S → E

E → T+E
 | T

T → id

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T+ • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]
Goto

- **Goto(s,x)** computes the state that the parser would reach if it recognized an \(x \) while in state \(s \)
 - \(\text{Goto(\{ [A→β•Xδ,a] \}, X)} \) produces \([A→βX•δ,a]\)
 - Should also includes \(\text{closure([A→βX•δ,a])} \)

\[
\begin{align*}
\text{Goto(} s, X) & = \\
\text{new} & ← \emptyset \\
\forall \text{ items } [A→β•Xδ,a] ∈ s & \quad // \text{for each item with } • \text{ to left of } X \\
\text{new} & ← \text{new} \cup [A→βX•δ,a] \quad // \text{add item with } • \text{ to right of } X \\
\text{return closure(new)} & \quad // \text{remember to compute closure!}
\end{align*}
\]

- Not a fixed-point method!
- Straightforward computation
- Uses \(\text{closure()} \)
 - Goto() moves forward
Example — goto with LR(0)

S → E
E → T+E
 | T
T → id

[S → E •]
[E → • T+E]
[E → • T]
[T → • id]

[kernel item]
[derived item]
Example — goto with LR(1)

\[
\begin{align*}
S &\rightarrow E \\
E &\rightarrow T+E \\
| &\quad T \\
T &\rightarrow id
\end{align*}
\]

\[
\begin{align*}
[S &\rightarrow \cdot E, $] \\
[E &\rightarrow \cdot T+E, $] \\
[E &\rightarrow \cdot T, $] \\
[T &\rightarrow \cdot id, +] \\
[T &\rightarrow \cdot id, $]
\end{align*}
\]
Building parser states

\[cc_0 \leftarrow \text{closure} \left([S' \rightarrow \cdot S, \$] \right) \]
\[\text{CC} \leftarrow \{ cc_0 \} \]

while (new sets are still being added to \text{CC})
 for each unmarked set \(cc_j \in \text{CC} \)
 mark \(cc_j \) as processed
 for each \(x \) following a \(\cdot \) in an item in \(cc_j \)
 \[\text{temp} \leftarrow \text{goto}(cc_j, x) \]
 if \(\text{temp} \notin \text{CC} \)
 then \(\text{CC} \leftarrow \text{CC} \cup \{ \text{temp} \} \)
 record transitions from \(cc_j \) to \(\text{temp} \) on \(x \)

- \(\text{CC} \) = canonical collection (of LR(k) items)
- Fixpoint computation (worklist version)
- Loop adds to \(\text{CC} \)
 - \(\text{CC} \subseteq 2^\text{ITEMS} \), so \(\text{CC} \) is finite
Example LR(0) states

S → E
E → T+E
 | T
T → id

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[E → T • +E]
[E → T •]

[T → • id]

[S → E •]
[T → id •]

[E → T + E •]
Example LR(1) states

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T+E \\
& \mid T \\
T & \rightarrow \text{id}
\end{align*}
\]
Building ACTION and GOTO tables

∀ set \(s_x \in S \)
∀ item \(i \in s_x \)
 if \(i \) is \([A \rightarrow \beta \cdot a \cdot \gamma, b]\) and \(\text{goto}(s_x, a) = s_k \), \(a \in \text{terminals} \) // • to left of terminal \(a \)
 then \(\text{ACTION}[x, a] \leftarrow \text{“shift k”} \) // ⇒ shift if lookahead = \(a \)
 else if \(i \) is \([S' \rightarrow S \cdot, $]\)
 then \(\text{ACTION}[x, $] \leftarrow \text{“accept”} \) // ⇒ accept if lookahead = \($ \)
 else if \(i \) is \([A \rightarrow \beta \cdot, a]\)
 then \(\text{ACTION}[x, a] \leftarrow \text{“reduce A→\beta”} \) // → production done
∀ \(n \in \text{nonterminals} \)
 if \(\text{goto}(s_x, n) = s_k \)
 then \(\text{GOTO}[x, n] \leftarrow k \) // store transitions for nonterminals

- Many items generate no table entry
 - e.g., \([A \rightarrow \beta \cdot B\alpha, a]\) does not, but closure ensures that all the rhs’s for \(B \) are in \(sx \)
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| \ T \)
4. \(T \rightarrow id \)

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

\[S \rightarrow \cdot E, \$ \]
\[E \rightarrow \cdot T+E, \$ \]
\[E \rightarrow \cdot T, \$ \]
\[T \rightarrow \cdot id, + \]
\[T \rightarrow \cdot id, \$ \]

\[E \rightarrow T \cdot +E, \$ \]
\[E \rightarrow T \cdot, \$ \]
Ex ACTION and GOTO tables

1. S → E
2. E → T+E
3. | T
4. T → id

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>s3</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Entries for shift

S0
[S → ⋅ E, $]
[E → ⋅ T+E, $]
[E → ⋅ T, $]
[T → ⋅ id, +]
[T → ⋅ id, $]

S1
[S → E ⋅, $]

S2
[E → T ⋅ +E, $]

[S → T ⋅, $]

S3
[T → id ⋅, +]

S4
[E → T + ⋅ E, $]

[S → T ⋅, $]

[S → id ⋅, $]

S5
[E → T + E ⋅, $]
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $| T$
4. $T \rightarrow id$

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

Entry for accept

Diagrams:
- S0: $[S \rightarrow \cdot E, \]$
 $[E \rightarrow \cdot T+E, \]$
 $[E \rightarrow \cdot T, \]$
 $[T \rightarrow \cdot id, +\]$
 $[T \rightarrow \cdot id, \]$

- S1: $[S \rightarrow E \cdot, \]$
- S2: $[E \rightarrow T \cdot +E, \]$
 $[E \rightarrow T \cdot, \]$
- S3: $[T \rightarrow id \cdot, +\]$
- S4: $[E \rightarrow T + \cdot E, \]$
 $[E \rightarrow \cdot T+E, \]$
 $[E \rightarrow \cdot T, \]$
 $[T \rightarrow \cdot id, +\]$
 $[T \rightarrow \cdot id, \]$
- S5: $[E \rightarrow T + E \cdot, \]$

Entry for accept
Ex ACTION and GOTO tables

1. $S \rightarrow E$
2. $E \rightarrow T+E$
3. $| T$
4. $T \rightarrow id$

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>E</td>
<td>s3</td>
<td>1</td>
</tr>
<tr>
<td>S0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Entries for reduce

[S → E •, $]
[E → T+E •, $]
[E → T •, $]
[T → id •, $]
[T → id •, +]

[S0]

[S1]

[S → E •, $]
[T → id •, $]

[S3]

[S4]

[S → E •, $]
[T → id •, $]

[S5]
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(\mid T \)
4. \(T \rightarrow id \)

entries for GOTO

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td>1 2</td>
</tr>
<tr>
<td>S1</td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>r2</td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>5 2</td>
</tr>
</tbody>
</table>

Entries for ACTION

\[
\begin{align*}
[S & \rightarrow \cdot E, $] \\
[E & \rightarrow \cdot T+E, $] \\
[E & \rightarrow \cdot T, $] \\
[T & \rightarrow \cdot id, +] \\
[T & \rightarrow \cdot id, $]
\end{align*}
\]

\[
\begin{align*}
[S & \rightarrow E \cdot, $] \\
[T & \rightarrow id \cdot, +] \\
[T & \rightarrow id \cdot, $] \\
[S1 &] \\
[S2 &] \\
[S3 &] \\
[S4 &] \\
[S5 &]
\end{align*}
\]
What can go wrong?

• What if set s contains $[A \rightarrow \beta \cdot a \gamma, b]$ and $[B \rightarrow \beta \cdot, a]$?
 ▪ First item generates “shift”, second generates “reduce”
 ▪ Both define $\text{ACTION}[s,a]$ — cannot do both actions
 ▪ This is a shift/reduce conflict

• What if set s contains $[A \rightarrow \gamma \cdot, a]$ and $[B \rightarrow \gamma \cdot, a]$?
 ▪ Each generates “reduce”, but with a different production
 ▪ Both define $\text{ACTION}[s,a]$ — cannot do both reductions
 ▪ This is called a reduce/reduce conflict

• In either case, the grammar is not LR(1)
Shift/reduce conflict

- Associativity unspecified
 - Ambiguous grammars always have conflicts
 - But, some non-ambiguous grammars also have conflicts
Solving conflicts

- Refactor grammar
- Specify operator precedence and associativity

```
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
```

- Lots of details here
 - See “12.4.2 Declarations” at
- When comparing operator on stack with lookahead
 - Shift if lookahead has higher prec OR same prec, right assoc
 - Reduce if lookahead has lower prec OR same prec, left assoc
- Can use smaller, simpler (ambiguous) grammars
 - Like the one we just saw
Left vs. right recursion

• Right recursion
 - Required for termination in top-down parsers
 - Produces right-associative operators

• Left recursion
 - Works fine in bottom-up parsers
 - Limits required stack space
 - Produces left-associative operators

• Rule of thumb
 - Left recursion for bottom-up parsers
 - Right recursion for top-down parsers
Reduce/reduce conflict (1)

Often these conflicts suggest a serious problem
 - Here, there’s a deep ambiguity

```yacc
%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main
%type <int> main
%%
main:    | expr EOL        { $1 }  
expr:    | INT            { $1 }  
        | term           { $1 }  
        | term PLUS expr { $1 + $3 }  
term :   | INT            { $1 }  
        | LPAREN expr RPAREN { $2 }  
```
Reduce/reduce conflict (2)

• Grammar not ambiguous, but not enough lookahead to distinguish last two expr productions
Shrinking the tables

- Combine terminals
 - E.g., number and identifier, or + and -, or * and /
 - Directly removes a column, may remove a row

- Combine rows or columns (*table compression*)
 - Implement identical rows once and remap states
 - Requires extra indirection on each lookup
 - Use separate mapping for ACTION and for GOTO

- Use another construction algorithm
 - LALR(1) used by ocamlyacc
LALR(1) parser

• Define the core of a set of LR(1) items as
 ▪ Set of LR(0) items derived by ignoring lookahead symbols

 \[
 \begin{align*}
 [E &\rightarrow a \cdot, b] \\
 [A &\rightarrow a \cdot, c]
 \end{align*}
 \]

 LR(1) state

 \[
 \begin{align*}
 [E &\rightarrow a \cdot] \\
 [A &\rightarrow a \cdot]
 \end{align*}
 \]

 Core

• LALR(1) parser merges two states if they have the same core

• Result
 ▪ Potentially much smaller set of states
 ▪ May introduce reduce/reduce conflicts
 ▪ Will not introduce shift/reduce conflicts
LALR(1) example

• Introduces reduce/reduce conflict
 ▪ Can reduce either $E \rightarrow a$ or $A \rightarrow ba$ for lookahead = b
LALR(1) vs. LR(1)

• Example grammar

\[
\begin{align*}
S' & \rightarrow S \\
S & \rightarrow aAd \mid bBd \mid aBe \mid bAe \\
A & \rightarrow c \\
B & \rightarrow c
\end{align*}
\]

• LR(0) ?

• LR(1) ?

• LALR(1) ?
LR(k) Parsers

• Properties
 - Strictly more powerful than LL(k) parsers
 - Most general non-backtracking shift-reduce parser
 - Detects error as soon as possible in left-to-right scan of input
 - Contents of stack are viable prefixes
 - Possible for remaining input to lead to successful parse
Error handling (lexing)

• What happens when input not handled by any lexing rule?
 ▪ An exception gets raised
 ▪ Better to provide more information, e.g.,

```ocaml
rule token = parse
...
| _ as lxm { Printf.printf "Illegal character %c" lxm; failwith "Bad input" }
```

• Even better, keep track of line numbers
 ▪ Store in a global-ish variable (oh no!)
 ▪ Increment as a side effect whenever \n recognized
Error handling (parsing)

- What happens when parsing a string not in the grammar?
 - Reject the input
 - Do we keep going, parsing more characters?
 - May cause a cascade of error messages
 - Could be more useful to programmer, if they don’t need to stop at the first error message (what do you do, in practice?)

- Ocamlyacc includes a basic error recovery mechanism
 - Special token `error` may appear in rhs of production
 - Matches erroneous input, allowing recovery
If unexpected input appears while trying to match `expr`, match token to `error`

- Effectively treats token as if it is produced from `expr`
- Triggers error action
Error example (2)

• If unexpected input appears while trying to match term, match tokens to error
 ▪ Pop every state off the stack until LPAREN on top
 ▪ Scan tokens up to RPAREN, and discard those, also
 ▪ Then match error production

...

```plaintext

term:
| INT                 { $1 } |
| LPAREN expr RPAREN  { $2 } |
| LPAREN error RPAREN { printf "Syntax error!\n"; 0} |
```

...
Error recovery in practice

- A very hard thing to get right!
 - Necessarily involves guessing at what malformed inputs you may see

- How useful is recovery?
 - Compilers are very fast today, so not so bad to stop at first error message, fix it, and go on
 - On the other hand, that does involve some delay

- Perhaps the most important feature is good error messages
 - Error recovery features useful for this, as well
 - Some compilers are better at this than others
OCamlyacc tip

- Setting OCAMLRUNPARAM=p will cause the parsing steps to be printed out as the parser runs.
- (And setting OCAMLRUNPARAM=b will tell OCaml to print a stack backtrace for any thrown exceptions.)
Real programming languages

• Essentially all real programming languages don’t quite work with parser generators
 ▪ Even Java is not quite LALR(1)

• Thus, real implementations play tricks with parsing actions to resolve conflicts

• In-class exercise: C typedefs and identifier declarations/definitions
Additional Parsing Technologies

- For a long time, parsing was a “dead” field
 - Considered solved a long time ago
- Recently, people have come back to it
 - LALR parsing can have unnecessary parsing conflicts
 - LALR parsing tradeoffs more important when computers were slower and memory was smaller
- Many recent new (or new-old) parsing techniques
 - GLR — generalized LR parsing, for ambiguous grammars
 - LL(*) — ANTLR
 - Packrat parsing — for parsing expression grammars
 - etc...
- The input syntax to many of these looks like yacc/lex
Designing language syntax

• Idea 1: Make it look like other, popular languages
 ■ Java did this (OO with C syntax)

• Idea 2: Make it look like the domain
 ■ There may be well-established notation in the domain (e.g., mathematics)
 ■ Domain experts already know that notation

• Idea 3: Measure design choices
 ■ E.g., ask users to perform programming (or related) task with various choices of syntax, evaluate performance, survey them on understanding
 - This is very hard to do!

• Idea 4: Make your users adapt
 ■ People are really good at learning...