CMSC 430
Introduction to Compilers
Fall 2016

Operational Semantics
Syntax vs. semantics

- Syntax = grammatical structure
- Semantics = underlying meaning

- Sentences in a language can be syntactically well-formed but semantically meaningless
 - if ("foo" > 37) { oogbooga(3); “baz” * “qux”; }

- ocamlllex and ocamlyacc enforce syntax
 - (Though could play tricks in actions to check semantics)
Syntax vs. semantics (cont’d)

- General principle: enforce correctness at the earliest stage possible
 - Keywords identified in lexer
 - Balanced ()’s enforced in parser
 - Types enforced afterward

- Why?
 - Earlier in pipeline ⇒ simpler to think about
 - Reporting errors is easier
 - Less transformation from original program
 - Errors may be easier to localize
 - Faster algorithms for detecting violations
 - Higher chance could employ them interactively in IDE
Detour: Natural deduction

• We are going to use *natural deduction* rules to describe semantics
 ▪ So we need to understand how those work first

• Natural deduction rules provide a syntax for writing down proofs
 ▪ Each rule is essentially an axiom
 ▪ Rules are composed together
 - The result is called a *derivation*
 ▪ The things rules prove are called *judgments*
Structure of a rule

- $H_1 \ldots H_n$ are *hypotheses*, C is the *conclusion*
- “If H_1 and H_2 and ... and H_n hold, then C holds”
IMP: A language of commands

\[a ::= n \mid X \mid a_0+a_1 \mid a_0-a_1 \mid a_0 \times a_1 \]
\[b ::= bv \mid a_0=a_1 \mid a_0 \leq a_1 \mid \neg b \mid b_0 \land b_1 \mid b_0 \lor b_1 \]
\[c ::= \text{skip} \mid X:=a \mid c_0;c_1 \mid \text{if } b \text{ then } c_0 \text{ else } c_1 \mid \text{while } b \text{ do } c \]

- \(n \in \mathbb{N} = \text{integers}, \ X \in \text{Var} = \text{variables}, \ bv \in \text{Bool} = \{\text{true, false}\} \)
- This is a typical way of presenting a language
 - Notice grammar is for ASTs
 - Not concerned about issues like ambiguity, associativity, precedence
- Syntax stratified into commands (c) and expressions (a,b)
 - Expressions have no side effects
- No function calls (and no higher order functions)
- So: How do we specify the semantics of IMP?
Program state

• IMP contains imperative updates, so we need to model the program state
 ▪ Here the state is simply the integer value of each variable
 ▪ (Notice can’t assign a boolean to a variable, by syntax!)

• State:
 ▪ $\sigma : \text{Var} \rightarrow \mathbb{N}$
 ▪ A state σ is a mapping from variables to their values
Judgments

- Operational semantics has three kinds of judgments
 - \(\langle a, \sigma \rangle \rightarrow n \)
 - In state \(\sigma \), arithmetic expression \(a \) evaluates to \(n \)
 - \(\langle b, \sigma \rangle \rightarrow bv \)
 - In state \(\sigma \), boolean expression \(b \) evaluates to \text{true} or \text{false}
 - \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Running command \(c \) in state \(\sigma \) produces state \(\sigma' \)
- Can immediately see only commands have side effects
 - Only form whose evaluation produces a new state
 - Commands also do not return values
 - Note this is math, so we express state changes by creating the new state \(\sigma' \). We can’t just “mutate” \(\sigma \).
Arithmetic evaluation

\[
\begin{align*}
\langle n, \sigma \rangle &\rightarrow n \\
\langle a_0, \sigma \rangle &\rightarrow n_0 \\
\langle a_1, \sigma \rangle &\rightarrow n_1 \\
\langle a_0 + a_1, \sigma \rangle &\rightarrow n_0 + n_1 \\
\langle a_0, \sigma \rangle &\rightarrow n_0 \\
\langle a_1, \sigma \rangle &\rightarrow n_1 \\
\langle a_0 - a_1, \sigma \rangle &\rightarrow n_0 - n_1 \\
\langle a_0 \times a_1, \sigma \rangle &\rightarrow n_0 \times n_1
\end{align*}
\]
Arithmetic evaluation (cont’d)

• Notes:
 - Rule for variables only defined if X is in $\text{dom}(\sigma)$. Otherwise the program goes wrong, i.e., it has no meaning.
 - Hypotheses of last three rules stacked to save space.
 - Notice difference between syntactic operators, on the left side of arrows, and mathematical operators, on the right side of arrows.
 - One rule for each kind of expression.
 - These are syntax-directed rules.
 - In the rules, we use terminals and non-terminals in the grammar to stand for anything producible from them.
 - E.g., n stands for any integer; σ for any state; etc.
 - Order of evaluation irrelevant, because there are no side effects.
Sample derivation

• 1+2+3
• \((2x)-4\) in \(\sigma = [x \mapsto 3]\)
Correspondence to OCaml

```ocaml
(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *)
type aexpr =
  | AInt of int
  | AVar of string
  | APlus of aexpr * aexpr
  | AMinus of aexpr * aexpr
  | ATimes of aexpr * aexpr

let rec aeval sigma = function
  | AInt n -> n
  | AVar n -> List.assoc n sigma
  | APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
  | AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2)
  | ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
```
Boolean evaluation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>true, σ → true</td>
<td>true</td>
</tr>
<tr>
<td>false, σ → false</td>
<td>false</td>
</tr>
<tr>
<td>¬b, σ → ¬bv</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0, σ → n0</td>
<td></td>
</tr>
<tr>
<td>a1, σ → n1</td>
<td></td>
</tr>
<tr>
<td>a0=a1, σ → n0=n1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0, σ → bv0</td>
<td></td>
</tr>
<tr>
<td>b1, σ → bv1</td>
<td></td>
</tr>
<tr>
<td>b0∧b1, σ → bv0∧bv1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0, σ → bv0</td>
<td></td>
</tr>
<tr>
<td>b1, σ → bv1</td>
<td></td>
</tr>
<tr>
<td>b0∨b1, σ → bv0∨bv1</td>
<td></td>
</tr>
</tbody>
</table>
Sample derivations

• \(\neg \text{false} \land \text{true} \)

• \(2 \leq X \lor X \leq 4 \) in \(\sigma = [X \mapsto 3] \)
Correspondence to OCaml

(* b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 *)

type bexpr =
| BV of bool
| BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr

let rec beval sigma = function
| BV b -> b
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
| BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
| BNot b -> not (beval sigma b)
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)
Command evaluation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle & \rightarrow \sigma \\
\langle a, \sigma \rangle & \rightarrow n \\
\langle X := a, \sigma \rangle & \rightarrow \sigma[X \mapsto n]
\end{align*}
\]

\[
\begin{align*}
\langle c0, \sigma \rangle & \rightarrow \sigma_0 \\
\langle c1, \sigma_0 \rangle & \rightarrow \sigma_1
\end{align*}
\]

\[
\begin{align*}
\langle c0; c1, \sigma \rangle & \rightarrow \sigma_1
\end{align*}
\]

- Here \(\sigma[X \mapsto a] \) is the state that is the same as \(\sigma \), except \(X \) now maps to \(a \)
 - \((\sigma[X \mapsto a])(X) = a \)
 - \((\sigma[X \mapsto a])(Y) = \sigma(Y) \quad X \neq Y \)
- Notice order of evaluation explicit in sequence rule
Command evaluation (cont’d)

• Two rules for conditional
 - Just like in logic we needed two rules for \land-E and \lor-I
 - Notice we specify only one command is executed

\[
\begin{align*}
\langle b, \sigma \rangle \rightarrow \text{true} & \quad \langle c_0, \sigma \rangle \rightarrow \sigma_0 \\
\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle & \rightarrow \sigma_0 \\
\langle b, \sigma \rangle \rightarrow \text{false} & \quad \langle c_1, \sigma \rangle \rightarrow \sigma_1 \\
\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle & \rightarrow \sigma_1
\end{align*}
\]
Command evaluation (cont’d)

\[
\begin{align*}
\langle b, \sigma \rangle & \rightarrow \text{false} \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \rightarrow \sigma \\
\langle b, \sigma \rangle & \rightarrow \text{true} \\
\langle \text{c; while } b \text{ do } c, \sigma \rangle & \rightarrow \sigma' \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \rightarrow \sigma'
\end{align*}
\]
Sample derivations

• \(n := 3; f := 1; \) while \(n \geq 1 \) do \(f := f \times n; \) \(n := n - 1 \)
Correspondence to OCaml

(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 |
 while b do c *)

type cmd =
| CSkip
| CAssn of string * aexpr
| CSeq of cmd * cmd
| CIf of bexpr * cmd * cmd
| CWhile of bexpr * cmd

let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x:(aeval sigma a))::sigma
 (* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
 let sigma0 = ceval sigma c0 in ceval sigma0 c1
 (* or "ceval (ceval sigma c0) c1" *)
| CIf (b, c0, c1) ->
 if (beval sigma b) then (ceval sigma c0)
 else (ceval sigma c1)
| CWhile (b, c) ->
 if (beval sigma b)
 then ceval sigma (CSeq (c, CWhile(b,c)))
 else sigma
Big-step semantics

- Semantics given are “big step” or “natural semantics”
 - E.g., \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Commands fully evaluated to produce the final output state, in one, big step

- Limitation: Can’t give semantics to non-terminating programs
 - We would need to work with infinite derivations, which is typically not valid
 - (Note: It is possible, though, using a co-inductive interpretation)
Small-step semantics

• Instead, can expose intermediate steps of computation
 - $a \rightarrow_\sigma a'$
 - Evaluating a one step in state σ produces a'
 - $b \rightarrow_\sigma b'$
 - Evaluating b one step in state σ produces b'
 - $\langle c, \sigma \rangle \rightarrow_1 \langle c', \sigma' \rangle$
 - Running command c in state σ for one step yields a new command c' and new state σ'

• Note putting σ on the arrow is just a convenience
 - Good notation for stringing evaluations together
 - $a0 \rightarrow_\sigma a1 \rightarrow_\sigma a2 \rightarrow_\sigma ...$
 - Put 1 on arrow for commands just to let us distinguish different kinds of arrows
Small-step rules for arithmetic

\[
\begin{align*}
X & \rightarrow_\sigma \sigma(X) \\
 a0 & \rightarrow_\sigma a0' \\
a0+a1 & \rightarrow_\sigma a0'+a1 \\
a1 & \rightarrow_\sigma a1' \\
 n+a1 & \rightarrow_\sigma n+a1' \\
p=m+n & \rightarrow_\sigma p
\end{align*}
\]

- Similarly for - and ×
- Notice no rule for evaluating integer \(n \)
 - An integer is in *normal form*, meaning no further evaluation is possible
- We’ve fixed the order of evaluation
 - Could also have made it non-deterministic
Context rules

• We have some rules that do the “real” work
 ▪ The rest are context rules that define order of evaluation

• Cool trick (due to Hieb and Felleisen):
 ▪ Define a context as a term with a “hole” in it
 - \(C ::= □ | C + a | n + C | C - a | n - C | C \times a | n \times C \)
 ▪ Notice the terms generated by this grammar always have exactly one □, and it always appears at the next position that can be evaluated
 ▪ Define \(C[a] \) to be \(C \) where □ is replaced by \(a \)
 - Ex: \(((□+3) \times 5)[4] = (4+3) \times 5\)
 ▪ Now add one, single context rule:
 \[
 a \rightarrow_\sigma a' \\
 C[a] \rightarrow_\sigma C[a']
 \]
Small-step rules for booleans

- Very similar to arithmetic expressions
 - Too boring to write them all down...
Small-step rules for commands

• Let’s define contexts, to get that out of the way
 ▪ $C ::= □ | X:=C | C;c_1 | \text{if } C \text{ then } c_0 \text{ else } c_1$

• Now the rules (plus the context rule):

<table>
<thead>
<tr>
<th>$\langle X:=n, \sigma \rangle$</th>
<th>\rightarrow_1</th>
<th>$\langle \text{skip, } \sigma[x\mapsto n] \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \text{skip; } c_1, \sigma \rangle$</td>
<td>\rightarrow_1</td>
<td>$\langle c_1, \sigma \rangle$</td>
</tr>
<tr>
<td>$\langle \text{if true then } c_0 \text{ else } c_1, \sigma \rangle$</td>
<td>\rightarrow_1</td>
<td>$\langle c_0, \sigma \rangle$</td>
</tr>
<tr>
<td>$\langle \text{if false then } c_0 \text{ else } c_1, \sigma \rangle$</td>
<td>\rightarrow_1</td>
<td>$\langle c_1, \sigma \rangle$</td>
</tr>
<tr>
<td>$\langle \text{while } b \text{ do } c, \sigma \rangle$</td>
<td>\rightarrow_1</td>
<td>$\langle \text{if } b \text{ then (c; while } b \text{ do } c) \text{ else skip, } \sigma \rangle$</td>
</tr>
</tbody>
</table>
Lambda calculus

• $e ::= x \mid \lambda x. e \mid e \; e$

• Recall
 ▪ Scope of λ extends as far to the right as possible
 - $\lambda x. \lambda y. x \; y$ is $\lambda x. (\lambda y. (x \; y))$
 ▪ Function application is left-associative
 - $x \; y \; z$ is $(x \; y) \; z$
 ▪ Beta-reduction takes a single step of evaluation
 - $(\lambda x. e_1) \; e_2 \rightarrow e_1[e_2/x]$
A nonderministic semantics

- Why are these semantics non-deterministic?
...with context rules

- $C ::= \Box \mid \lambda x. C \mid C \ e \mid e \ C$

\[
\frac{e \rightarrow e'}{C[e] \rightarrow C[e']}
\]

\[
(\lambda x. e1) \ e2 \rightarrow e1[e2/x]
\]
The Church-Rosser Theorem

• If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

• Church-Rosser is also called confluence
Normal Form

• A term is in *normal form* if it cannot be reduced
 • Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

• By Church-Rosser Theorem, every term reduces to at most one normal form
 • Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

• Notice that for our application rule, the argument need not be in normal form
Not Every Term Has a Normal Form

• Consider
 ▪ $\Delta = \lambda x. x x$
 ▪ Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \ldots$

• In general, *self application* leads to loops
 ▪ ...which is where the Y combinator comes from (see 330)
Lazy vs. Eager Evaluation

Our non-deterministic reduction rule is fine in theory, but awkward to implement

Two deterministic strategies:

- **Lazy**: Given \((\lambda x. e_1) \; e_2\), do not evaluate \(e_2\) if \(e_1\) does not “need” \(x\)
 - Also called left-most, **call-by-name (c.b.n.)**, call-by-need, applicative, normal-order (with slightly different meanings)

- **Eager**: Given \((\lambda x. e_1) \; e_2\), always evaluate \(e_2\) fully before applying the function
 - Also called **call-by-value (c.b.v.)**
C.b.n. small-step semantics

- $e ::= x | \lambda x.e | e
 e$

- Must evaluate function position until we get to a lambda
- Apply as soon as we know what fn we’re applying
- Do not evaluate “under” and lambda
- Do not evaluate the argument

- In context form:
 - $C ::= \Box | C e$

\[(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x]\]
\[e_1 \rightarrow e_1'\]
\[e_1 e_2 \rightarrow e_1' e_2\]
C.b.v. small-step semantics

- $e ::= x \mid v \mid e \; e$
- $v ::= \lambda x. e$

- $(\lambda x. e) \; v \rightarrow e[v/x]$

- Must evaluate function position until we get to a lambda
- Evaluate function posn *before* argument posn
 - Not important here, but matters if we add side effects
- Do not evaluate “under” and lambda
- Argument must be fully evaluated before the call

- In context form:
 - $C ::= \square \mid C \; e \mid v \; C$
C.b.n. versus c.b.v. in theory

• Call-by-name is *normalizing*
 - If \(a \) is closed and there is a normal form \(b \) such that \(a \rightarrow^* b \) under the non-deterministic semantics, then \(a \rightarrow^* d \) for some \(d \) under c.b.n. semantics

• Call-by-value is not!
 - There are some programs that terminate under call-by-name but not under call-by-value
 - E.g., \((\lambda x.(\lambda y.y)) (\Delta \Delta) \)
 - Where \(\Delta = \lambda x.x \ x \)
 - The non-terminating argument \((\Delta \Delta) \) is discarded under c.b.n., but c.b.v. attempts to evaluate it
Lazy evaluation (call by name, call by need)
- Has some nice theoretical properties
- Terminates more often
- Lets you play some tricks with “infinite” objects
- Main example: Haskell

Eager evaluation (call by value)
- Is generally easier to implement efficiently
- Blends more easily with side effects
- Main examples: Most languages (C, Java, ML, etc.)