CMSC 430
Introduction to Compilers
Fall 2016

Optimization
Introduction

• An *optimization* is a transformation “expected” to
 ■ Improve running time
 ■ Reduce memory requirements
 ■ Decrease code size

• No guarantees with optimizers
 ■ Produces “improved,” not “optimal” code
 ■ Can sometimes produce worse code
Why are optimizers needed?

• Reduce programmer effort
 ▪ Don’t make programmers waste time doing simple opts

• Allow programmer to use high-level abstractions without penalty
 ▪ E.g., convert dynamic dispatch to direct calls

• Maintain performance portability
 ▪ Allow programmer to write code that runs efficiently everywhere
 ▪ Particularly a challenge with GPU code
Two laws and a measurement

• Moore’s law
 ▪ Chip density doubles every 18 months
 ▪ Until now, has meant CPU speed doubled every 18 months
 - These days, moving to multicore instead

• Proebsting’s Law
 ▪ Compiler technology doubles CPU power every 18 years
 - Difference between optimizing and non-optimizing compiler about 4x
 - Assume compiler technology represents 36 years of progress

• Worse: runtime performance swings of up to 10% can be expected with no changes to executable
 ▪ http://dl.acm.org/citation.cfm?id=1508275
Dimensions of optimization

• Representation to be optimized
 ▪ Source code/AST
 ▪ IR/bytecode
 ▪ Machine code

• Types of optimization
 ▪ Peephole — across a few instructions (often, machine code)
 ▪ Local — within basic block
 ▪ Global — across basic blocks
 ▪ Interprocedural — across functions
Dimensions of optimization (cont’d)

• Machine-independent
 ■ Remove extra computations
 ■ Simplify control structures
 ■ Move code to less frequently executed place
 ■ Specialize general purpose code
 ■ Remove dead/useless code
 ■ Enable other optimizations

• Machine-dependent
 ■ Replace complex operations with simpler/faster ones
 ■ Exploit special instructions (MMX)
 ■ Exploit memory hierarchy (registers, cache, etc)
 ■ Exploit parallelism (ILP, VLIW, etc)
Selecting optimizations

• Three main considerations
 ■ Safety — will optimizer maintain semantics?
 - Tricky for languages with partially undefined semantics!
 ■ Profitability — will optimization improve code?
 ■ Opportunity — could optimization often enough to make it worth implementing?

• Optimizations interact!
 ■ Some optimizations enable other optimizations
 - E.g., constant folding enables copy propagation
 ■ Some optimizations block other optimizations
Some classical optimizations

- Dead code elimination
 - Also, unreachable functions or methods

- Control-flow simplification
 - Remove jumps to jumps

```c
jmp L
/* unreachable */
L: ...

if true then
... else
/* unreachable */

a = 5 /* dead */
a = 6
```
```
jmp L
/* unreachable */
L: goto M
M: ...
```
```
jmp M
/* unreachable */
M: ...
```
More classical optimizations

- **Algebraic simplification**

 - Be sure simplifications apply to modular arithmetic

- **Constant folding**

 - Pre-compute expressions involving only constants

- **Special handling for idioms**

 - Replace multiplication by shifting

 - May need constant folding to enable sometimes
More classical optimizations

• Common subexpression elimination

\[
\begin{align*}
a &= b + c \\
d &= b + c
\end{align*}
\Rightarrow
\begin{align*}
a &= b + c \\
d &= a
\end{align*}
\]

• Copy propagation

\[
\begin{align*}
b &= a \\
c &= b \\
&\text{/* } b \text{ dead */}
\end{align*}
\Rightarrow
\begin{align*}
b &= a \\
c &= a \\
&\text{/* } b \text{ dead */}
\end{align*}
\rightarrow
\begin{align*}
c &= a
\end{align*}
\]
Example

Fortran (!) source code:

```
  sum = 0
  do 10 i = 1, n
  10  sum = sum + a(i) * a(i)
```
Three-address code

1. \(\text{sum} = 0 \)
2. \(i = 1 \)
3. \(\text{if } i > n \text{ goto 15} \)
4. \(t1 = \text{addr}(a) - 4 \)
5. \(t2 = i \times 4 \)
6. \(t3 = t1[t2] \)
7. \(t4 = \text{addr}(a) - 4 \)
8. \(t5 = i \times 4 \)
9. \(t6 = t4[t5] \)
10. \(t7 = t3 \times t6 \)
11. \(t8 = \text{sum} + t7 \)
12. \(\text{sum} = t8 \)
13. \(i = i + 1 \)
14. \(\text{goto 3} \)
15. \(\text{sum} = 0 \)

init for loop and check limit

a[i]

a[i]

a[i] * a[i]

increment sum

Incr. loop counter back to loop check
Control-flow graph

1. sum = 0
2. i = 1
3. if i > n goto 15
 T
 15.
 F
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
Common subexpression elimination

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
7. t4 = addr(a) - 4
8. t5 = i * 4
9. t6 = t4[t5]
10. t7 = t3 * t6
10a. t7 = t3 * t3
11. t8 = sum + t7
12. sum = t8
13. i = i + 1
14. goto 3
15.
Copy propagation

1. sum = 0
2. i = 1
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
11. t8 = sum + t7
12. sum = t8
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
3. if i > n goto 15
4. t1 = addr(a) - 4
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
13. i = i + 1
14. goto 3
15.
1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2b. t2 = i * 4
3. if i > n goto 15
5. t2 = i * 4
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
13. i = i + 1
14. goto 3
15.

Strength reduction
Loop test adjustment

1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i \times 4 \)
2c. \(t9 = n \times 4 \)
3. \(\text{if } i > n \text{ goto 15} \)
3a. \(\text{if } t2 > t9 \text{ goto 15} \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
13. \(i = i + 1 \)
14. \(\text{goto 3a} \)
15.
Induction variable elimination

1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i \times 4 \)
2c. \(t9 = n \times 4 \)
3a. if \(t2 > t9 \) goto 15
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
13. \(i = i + 1 \)
14. goto 3a
15.
Constant propagation

1. \(\text{sum} = 0 \)
2. \(i = 1 \)
2a. \(t1 = \text{addr}(a) - 4 \)
2b. \(t2 = i \times 4 \)
2d. \(t2 = 4 \)
2c. \(t9 = n \times 4 \)
3a. \(\text{if} \ t2 > t9 \ \text{goto} \ 15 \)
6. \(t3 = t1[t2] \)
10a. \(t7 = t3 \times t3 \)
12a. \(\text{sum} = \text{sum} + t7 \)
12b. \(t2 = t2 + 4 \)
14. \(\text{goto} \ 3a \)
15.
Dead code elimination

1. sum = 0
2. i = 1
2a. t1 = addr(a) - 4
2d. t2 = 4
2c. t9 = n * 4
3a. if t2 > t9 goto 15
6. t3 = t1[t2]
10a. t7 = t3 * t3
12a. sum = sum + t7
12b. t2 = t2 + 4
14. goto 3a
15.
1. sum = 0
2. t1 = addr(a) - 4
3. t2 = 4
4. t4 = n * 4
5. if t2 > t4 goto 11
6. t3 = t1[t2]
7. t5 = t3 * t3
8. sum = sum + t5
9. t2 = t2 + 4
10. goto 5
11.

unoptimized: 8 temps, 11 stmts in innermost loop
optimized: 5 temps, 5 stmts in innermost loop

1 index addressing 2 index addressing
1 multiplication 3 multiplications
2 additions 2 additions & 2 subtractions
1 jump
1 test
1 jump
1 test
1 copy
1. sum = 0
2. t1 = addr[a] - 4
3. t2 = 4
4. t4 = 4 * n
5. if t2 > t4 goto 11
6. t3 = t1[t2]
7. t5 = t3 * t3
8. sum = sum + t5
9. t2 = t2 + 4
10. goto 5

CFG of final optimized code
n = 1; k = 0; m = 3;

read x;

while (n < 10) {
 if (2 + x \geq 5) k = 5;
 if (3 + k == 3) m = m + 2;
 n = n + k + m;
}

General code motion
1. n = 1; 2. k = 0; 3. m = 3;

4. read x;

5. while (n < 10) {

6. if (2 * x ≥ 5) 7. k := 5;

8. if (3 + k == 3) 9. m := m + 2;

10. n = n + k + m;

11. }

Invariant within loop and therefore moveable

Unaffected by definitions in loop and guarded by invariant condition

Moveable after we move statements 6 and 7

Not moveable because may use def of m from statement 9 on previous iteration
General code motion, result

```c
n = 1; k = 0; m = 3;
read x;
while (n < 10) {
    if (2 * x ≥ 5) k = 5;
    if (3 + k == 3) m = m + 2;
    n = n + k + m;
}
```

```c
t1 = (3 + k == 3);
while (n < 10) {
    if (t1) m = m + 2;
    n = n + k + m;
}
```
Code specialization

n = 1; k = 0; m = 3;
read x;
if (2 * x ≥ 5) k := 5;
t1 = (3 + k == 3);
if (t1)
 while (n < 10) {
 m = m + 2;
 n = n + k + m;
 }
else
 while (n < 10)
 n = n + k + m;

Specialization of while loop depending on value of t1
(Global) common subexpr elim

\[z = a \times b \]
\[r = 2 \times z \]
\[q = a \times b \]
\[u = a \times b \]
\[z = u / 2 \]
\[w = a \times b \]

Can be eliminated since \(a \times b \) is available, i.e., calculated on all paths to this point.

Cannot be eliminated since \(a \times b \) is not available on all path reaching this point.
Ensure \(a*b \) is assigned to the same variable \(t \) so it can be used for the assignment to \(u \).
Copy propagation

We can then forward substitute \(t \) for \(z \)...
Dead code elimination

...and eliminate the assignment to z since it is now dead code.
What else can we do?

\[w = a \times b \]
\[u = t \]
\[z = u / 2 \]
\[t = a \times b \]
\[q = t \]
\[r = 2 \times t \]
We can compute $a*b$ on paths where it is not available…

Then eliminate the now fully redundant computation of $a*b$.