CMSC 430
Introduction to Compilers
Fall 2016

Data Flow Analysis
Data Flow Analysis

• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts
 ■ Works best on properties about *how* program computes

• Based on all paths through program
 ■ Including infeasible paths

• Operates on control-flow graphs, typically
\[x := a + b; \]
\[y := a \times b; \]

while (\(y > a \)) {
 \[a := a + 1; \]
 \[x := a + b \]
}
Control-Flow Graph w/Basic Blocks

\[x := a + b; \]
\[y := a \times b; \]
\[\text{while } (y > a + b) \{ \]
\[\quad a := a + 1; \]
\[\quad x := a + b \]
\[\}

- Can lead to more efficient implementations
- But more complicated to explain, so...
 - We’ll use single-statement blocks in lecture today
Example with Entry and Exit

\[
x := a + b;
y := a \times b;
\text{while (} y > a \text{)} \{ \\
 \quad a := a + 1; \\
 \quad x := a + b
\}
\]

- All nodes without a (normal) predecessor should be pointed to by entry
- All nodes without a successor should point to exit
Notes on Entry and Exit

• Typically, we perform data flow analysis on a function body

• Functions usually have
 - A unique entry point
 - Multiple exit points

• So in practice, there can be multiple exit nodes in the CFG
 - For the rest of these slides, we’ll assume there’s only one
 - In practice, just treat all exit nodes the same way as if there’s only one exit node
Available Expressions
Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on the paths to p
Available Expressions

• An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on the paths to p

• Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it’s still in a register somewhere)
Data Flow Facts

• Is expression e available?

• Facts:
 - $a + b$ is available
 - $a \times b$ is available
 - $a + 1$ is available
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a + b</td>
<td>a + b, a * b</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a * b</td>
<td>a + b, a + b, a * b</td>
</tr>
<tr>
<td>a := a + l</td>
<td></td>
<td>a + l, a + b, a * b</td>
</tr>
</tbody>
</table>

entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

ex

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

∅

entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{a + b}

exit
Computing Available Expressions

∅ → entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{a + b} → entry

exit
Computing Available Expressions

∅

entry

x := a + b

{a + b}

y := a * b

{a + b, a * b}

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

\[
\begin{align*}
\emptyset & \\
\text{entry} & \\
x := a + b & \\
y := a \times b & \\
y > a & \\
a := a + 1 & \\
x := a + b & \\
\end{align*}
\]
Computing Available Expressions

∅

entry

x := a + b

{a + b}

y := a * b

{a + b, a * b}

y > a

{a + b, a * b}

a := a + 1

x := a + b

{a + b, a * b}

exit
Computing Available Expressions

entry

∅

{x := a + b}

y := a * b

{a + b, a * b}

y > a

{a + b, a * b}

a := a + 1

x := a + b

exit
Computing Available Expressions

- \(\emptyset \) to entry
- \(\{a + b\} \) to \(x := a + b \)
- \(\{a + b, a \times b\} \) to \(y := a \times b \)
- \(\{a + b, a \times b\} \) to \(y > a \)
- \(\emptyset \) to \(a := a + 1 \)
- \(\emptyset \) to \(x := a + b \)

Flowchart:
- Entry
- \(x := a + b \)
- \(y := a \times b \)
- \(y > a \)
- \(a := a + 1 \)
- \(x := a + b \)
- Exit
Computing Available Expressions

\[\emptyset \]

entry

[latex]
x := a + b
\[/latex]

\{a + b\}

[latex]
y := a \times b
\[/latex]

\{a + b, a \times b\}

[latex]
y > a
\[/latex]

\{a + b, a \times b\}

[latex]
a := a + 1
\[/latex]

\[\emptyset \]

x := a + b

exit
Computing Available Expressions

∅ → entry

{x := a + b} → y := a * b

{a + b, a * b} → y > a

{a + b, a * b} → a := a + 1

∅ → x := a + b

{a + b} → exit
Computing Available Expressions

\[\emptyset \]

entry

\[x := a + b \]

\{a + b\}

\[y := a \times b \]

\{a + b, a \times b\}

\[y > a \]

\{a + b, a \times b\}

\[a := a + 1 \]

\[x := a + b \]

\[x := a + b \]

exit

\{a + b\}

\emptyset
Computing Available Expressions

entry

\(x := a + b \)

\(y := a \times b \)

\(y > a \)

\(a := a + 1 \)

\(x := a + b \)

∅

\{a + b\}

\{a + b, a \times b\}

\{a + b, a \times b\}

∅

\{a + b\}

exit
Computing Available Expressions

\[\emptyset \rightarrow \text{entry} \]

\[x := a + b \]

\[\{a + b\} \rightarrow y := a \ast b \]

\[\{a + b, a \ast b\} \rightarrow y > a \]

\[\emptyset \rightarrow a := a + 1 \]

\[\{a + b\} \rightarrow x := a + b \]

\[\emptyset \rightarrow \text{exit} \]
Computing Available Expressions

∅

entry

x := a + b

{a + b}

y := a * b

{a + b, a * b}

y > a

∅

a := a + 1

∅

x := a + b

{a + b}

y > a

∅

exit

{a + b}

x := a + b

{a + b}
Computing Available Expressions

\[\emptyset \rightarrow \text{entry} \]

\[x := a + b \]

\[\{a + b\} \rightarrow y := a \times b \]

\[\{a + b, a \times b\} \rightarrow y > a \]

\[\emptyset \rightarrow a := a + 1 \]

\[\{a + b\} \rightarrow x := a + b \]

\[\{a + b\} \rightarrow \text{exit} \]
Computing Available Expressions

∅ entry

{x := a + b}

{a + b, a * b}

y := a * b

{a + b}

y > a

∅ exit

{a + b}

a := a + 1

∅ exit

{a + b}

x := a + b

{a + b}
Terminology

• A *joint point* is a program point where two branches meet

• Available expressions is a *forward must* problem
 - Forward = Data flow from *in* to *out*
 - Must = At join point, property must hold on all paths that are joined
Data Flow Equations

• Let \(s \) be a statement
 - \(\text{succ}(s) = \{ \text{immediate successor statements of } s \} \)
 - \(\text{pred}(s) = \{ \text{immediate predecessor statements of } s \} \)
 - \(\text{in}(s) = \text{program point just before executing } s \)
 - \(\text{out}(s) = \text{program point just after executing } s \)

• \(\text{in}(s) = \bigcap_{s' \in \text{pred}(s)} \text{out}(s') \)

• \(\text{out}(s) = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s)) \)
 - Note: These are also called transfer functions
Liveness Analysis
Liveness Analysis

• A variable v is *live* at program point p if
 ▪ v will be used on some execution path originating from p...
 ▪ before v is overwritten
A variable \(v \) is *live* at program point \(p \) if
- \(v \) will be used on some execution path originating from \(p \)...
- before \(v \) is overwritten

Optimization
- If a variable is not live, no need to keep it in a register
- If variable is dead at assignment, can eliminate assignment
Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths

- Liveness is a *backward may* problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

- \[\text{out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{in}(s') \]

- \[\text{in}(s) = \text{gen}(s) \cup (\text{out}(s) - \text{kill}(s)) \]
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y > a</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Computing Live Variables

```
\[
x := a + b
\]
\[
y := a * b
\]
\[
y > a
\]
\[
a := a + 1
\]
\[
x := a + b
\]
```
Computing Live Variables

\[x := a + b \]
\[y := a \times b \]
\[y > a \]
\[a := a + 1 \]
\[x := a + b \]
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]

\{x, y, a\}

\{x\}
Computing Live Variables

{x, y, a}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x}
Computing Live Variables

\[
x := a + b
\]

\[
y := a * b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]

\[
\{x, y, a\}
\]

\[
\{y, a, b\}
\]

\[
\{x, y, a\}
\]
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[y > a\]

\[a := a + 1\]

\[x := a + b\]
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]

\{y, a, b\} → {x} → \{y, a, b\} → {y, a, b} → {x, y, a} → {x}
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[y > a\]

\[
a := a + 1
\]

\[
x := a + b
\]
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[y > a\]

\[
a := a + 1
\]

\[
x := a + b
\]
Computing Live Variables

\[
x := a + b
\]
\[
y := a \cdot b
\]
\[
y > a
\]
\[
a := a + 1
\]
\[
x := a + b
\]
Computing Live Variables

\[x := a + b \]
\[y := a \times b \]
\[y > a \]
\[a := a + 1 \]
\[x := a + b \]
Computing Live Variables

{x, y, a, b} → \(x := a + b\)

→ \{x, a, b\} → \(y := a \times b\)

→ \{x, y, a, b\} → \(y > a\)

→ \{y, a, b\} → \(a := a + 1\)

→ \{y, a, b\} → \(x := a + b\)

→ \{x, y, a, b\} → \{x\}
Very Busy Expressions

• An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

• Optimization
 - Can hoist very busy expression computation

• What kind of problem?
 - Forward or backward?
 - May or must?
Very Busy Expressions

• An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

• Optimization
 - Can hoist very busy expression computation

• What kind of problem?
 - Forward or backward? backward
 - May or must?
Very Busy Expressions

• An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

• Optimization
 - Can hoist very busy expression computation

• What kind of problem?
 - Forward or backward? backward
 - May or must? must
Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is no intervening assignment to v

- Also called def-use information

- What kind of problem?
 - Forward or backward?
 - May or must?
Reaching Definitions

• A definition of a variable v is an assignment to v

• A definition of variable v reaches point p if
 ▪ There is no intervening assignment to v

• Also called def-use information

• What kind of problem?
 ▪ Forward or backward? forward
 ▪ May or must?
Reaching Definitions

• A definition of a variable v is an assignment to v.

• A definition of variable v reaches point p if
 ■ There is no intervening assignment to v

• Also called def-use information

• What kind of problem?
 ■ Forward or backward? forward
 ■ May or must? may
Most data flow analyses can be classified this way:
- A few don’t fit: bidirectional analysis

Lots of literature on data flow analysis.
Solving data flow equations

• Let’s start with forward may analysis
 ■ Dataflow equations:
 - $\text{in}(s) = \bigcup_{s' \in \text{pred}(s)} \text{out}(s')$
 - $\text{out}(s) = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s))$

• Need algorithm to compute in and out at each stmt

• Key observation: out(s) is monotonic in in(s)
 ■ gen(s) and kill(s) are fixed for a given s
 ■ If, during our algorithm, in(s) grows, then out(s) grows
 ■ Furthermore, out(s) and in(s) have max size

• Same with in(s)
 ■ in terms of out(s’) for precedessors s’
Solving data flow equations (cont’d)

• Idea: fixpoint algorithm
 ▪ Set $\text{out}(\text{entry})$ to emptyset
 - E.g., we know no definitions reach the entry of the program
 ▪ Initially, assume $\text{in}(s)$, $\text{out}(s)$ empty everywhere else, also
 ▪ Pick a statement s
 - Compute $\text{in}(s)$ from predecessors’ out’s
 - Compute new $\text{out}(s)$ for s
 ▪ Repeat until nothing changes

• Improvement: use a worklist
 ▪ Add statements to worklist if their $\text{in}(s)$ might change
 ▪ Fixpoint reached when worklist is empty
Forward May Data Flow Algorithm

\[
\text{out(entry)} = \emptyset \\
\text{for all other statements } s \\
\quad \text{out}(s) = \emptyset \\
W = \text{all statements} \quad \text{// worklist} \\
\text{while } W \text{ not empty} \\
\quad \text{take } s \text{ from } W \\
\quad \text{in}(s) = \bigcup_{s' \in \text{pred}(s)} \text{out}(s') \\
\quad \text{temp} = \text{gen}(s) \cup (\text{in}(s) - \text{kill}(s)) \\
\quad \text{if } \text{temp} \neq \text{out}(s) \text{ then} \\
\quad\quad \text{out}(s) = \text{temp} \\
\quad\quad W := W \cup \text{succ}(s) \\
\text{end} \\
\text{end}
\]
Generalizing

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
</table>
| **Forward** | in(s) = \(\bigcup_{s' \in \text{pred}(s)} \text{out}(s') \)
out(s) = gen(s) \(\cup \) (in(s) - kill(s))
out(entry) = \(\emptyset \)
initial out elsewhere = \(\emptyset \) | in(s) = \(\bigcap_{s' \in \text{pred}(s)} \text{out}(s') \)
out(s) = gen(s) \(\cup \) (in(s) - kill(s))
out(entry) = \(\emptyset \)
initial out elsewhere = \{all facts\} |
| **Backward** | out(s) = \(\bigcup_{s' \in \text{succ}(s)} \text{in}(s') \)
in(s) = gen(s) \(\cup \) (out(s) - kill(s))
in(exit) = \(\emptyset \)
initial in elsewhere = \(\emptyset \) | out(s) = \(\bigcap_{s' \in \text{succ}(s)} \text{in}(s') \)
in(s) = gen(s) \(\cup \) (out(s) - kill(s))
in(exit) = \(\emptyset \)
initial in elsewhere = \{all facts\} |
Forward Analysis

<table>
<thead>
<tr>
<th>May</th>
<th>Must</th>
</tr>
</thead>
</table>

Out function

- **out(entry)** = ∅
- for all other statements **s**
 - out(s) = ∅

Worklist

- **W** = all statements // worklist
- while **W** not empty
 - take **s** from **W**
 - in(s) = \(\bigcup_{s' \in \text{pred}(s)} \text{out}(s') \)
 - temp = gen(s) \(\cup \) (in(s) - kill(s))
 - if temp \(\neq \) out(s) then
 - out(s) = temp
 - W := W \(\cup \) succ(s)
 - end
- end

Must function

- **out(entry)** = ∅
- for all other statements **s**
 - out(s) = all facts

Worklist

- **W** = all statements
- while **W** not empty
 - take **s** from **W**
 - in(s) = \(\bigcap_{s' \in \text{pred}(s)} \text{out}(s') \)
 - temp = gen(s) \(\cup \) (in(s) - kill(s))
 - if temp \(\neq \) out(s) then
 - out(s) = temp
 - W := W \(\cup \) succ(s)
 - end
- end
Backward Analysis

\[\text{in}({\text{exit}}) = \emptyset \]
for all other statements \(s\)
\[\text{in}(s) = \emptyset \]
\(W = \text{all statements}\)
while \(W\) not empty
 take \(s\) from \(W\)
 \[\text{out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{in}(s') \]
 \[\text{temp} = \text{gen}(s) \cup (\text{out}(s) - \text{kill}(s)) \]
 if \(\text{temp} \neq \text{in}(s)\) then
 \[\text{in}(s) = \text{temp} \]
 \(W := W \cup \text{pred}(s)\)
 end
end

\[\text{in}({\text{exit}}) = \emptyset \]
for all other statements \(s\)
\[\text{in}(s) = \text{all facts} \]
\(W = \text{all statements}\)
while \(W\) not empty
 take \(s\) from \(W\)
 \[\text{out}(s) = \bigcap_{s' \in \text{succ}(s)} \text{in}(s') \]
 \[\text{temp} = \text{gen}(s) \cup (\text{out}(s) - \text{kill}(s)) \]
 if \(\text{temp} \neq \text{in}(s)\) then
 \[\text{in}(s) = \text{temp} \]
 \(W := W \cup \text{pred}(s)\)
 end
end

May

Must
Practical Implementation

• Represent set of facts as bit vector
 ■ Fact_i represented by bit i
 ■ Intersection = bitwise and, union = bitwise or, etc

• “Only” a constant factor speedup
 ■ But very useful in practice
Basic Blocks

• Recall a *basic block* is a sequence of statements s.t.
 ▪ No statement except the last in a branch
 ▪ There are no branches to any statement in the block except the first

• In some data flow implementations,
 ▪ Compute gen/kill for each basic block as a whole
 - Compose transfer functions
 ▪ Store only in/out for each basic block
 ▪ Typical basic block ~5 statements
 - At least, this used to be the case...
Order Matters

• Assume forward data flow problem
 ▪ Let $G = (V, E)$ be the CFG
 ▪ Let k be the height of the lattice

• If G acyclic, visit in topological order
 ▪ Visit head before tail of edge

• Running time $O(|E|)$
 ▪ No matter what size the lattice
Order Matters — Cycles

• If G has cycles, visit in reverse postorder
 ■ Order from depth-first search
 ■ (Reverse for backward analysis)

• Let $Q = \text{max} \ # \text{ back edges on cycle-free path}$
 ■ Nesting depth
 ■ Back edge is from node to ancestor in DFS tree

• In common cases, running time can be shown to be $O((Q+1)|E|)$
 ■ Proportional to structure of CFG rather than lattice
Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - i.e., we keep track of facts per program point

- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - /* x : int */ x := ... /* x : int */
Data Flow Analysis and Functions

• What happens at a function call?
 ■ Lots of proposed solutions in data flow analysis literature

• In practice, only analyze one procedure at a time

• Consequences
 ■ Call to function kills all data flow facts
 ■ May be able to improve depending on language, e.g., function call may not affect locals
More Terminology

- An analysis that models only a single function at a time is *intraprocedural*
- An analysis that takes multiple functions into account is *interprocedural*
- An analysis that takes the whole program into account is *whole program*

Note: global analysis means “more than one basic block,” but still within a function
 - Old terminology from when computers were slow...
Data Flow Analysis and The Heap

• Data Flow is good at analyzing local variables
 ▪ But what about values stored in the heap?
 ▪ Not modeled in traditional data flow

• In practice: \(*x := e*
 ▪ Assume all data flow facts killed (!)
 ▪ Or, assume write through \(x\) may affect any variable whose address has been taken

• In general, hard to analyze pointers
Proebsting’s Law
Proebsting’s Law

• Moore’s Law: Hardware advances double computing power every 18 months.
Proebsting’s Law

- Moore’s Law: Hardware advances double computing power every 18 months.

- Proebsting’s Law: Compiler advances double computing power every 18 years.
Proebsting’s Law

• Moore’s Law: Hardware advances double computing power every 18 months.

• Proebsting’s Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!
DFA and Defect Detection

- LCLint - Evans et al. (UVa)
- METAL - Engler et al. (Stanford, now Coverity)
- ESP - Das et al. (MSR)
- FindBugs - Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.

- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)