
Name:

Midterm 2
CMSC 430

Introduction to Compilers
Spring 2015

April 23, 2015

Instructions

This exam contains 7 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 15

2 15

3 25

Total 55

1

Question 1. Short Answer (15 points).

a. (5 points) Briefly explain the difference between type inference and type checking.

Answer: Type inference starts from a program without type annotations and tries to construct
annotations that make the program well-typed.

Type checking starts from a program with type annotations and tries to confirm that the program
is well-typed.

b. (5 points) In a few sentences, describe how a method invocation o.m(a1, . . . , an) (“invoke method m on
object o with arguments a1, . . . , an”) could be carried out by a virtual machine.

Answer: The virtual machine accesses the object o’s class name and retrieves the corresponding
virtual table to see if it contains m. If so, it calls the method body passing o (as this) and
arguments a1 . . . an. If not, it tries again starting from the object’s superclass.

2

c. (5 points) Briefly explain the purpose of a closure.

Answer: The purpose of a closure is represent a delay substitution; it pairs together an expression
to be evaluated later and an environment giving meanings to the free variables in the expression.

3

Question 2. Program transformations (15 points).

a. (15 points) Apply defunctionalization to this program:

type bt =

| Leaf

| Node of int ∗ bt ∗ bt

let rec sumk b k =

match b with

| Leaf → k 0

| Node (i, b1, b2) →
sumk b1 (fun sb1 → sumk b2 (fun sb2 → k (i + sb1 + sb2)))

let sum b =

sumk b (fun sb → sb)

Answer:

let rec sumk b k =

match b with

| Leaf → apply k 0

| Node (i, b1, b2) →
sumk b1 (K1 (b2, i , k))

and apply k n =

match k with

| K0 → n

| K1 (b2, i , k) →
let sb1 = n in

sumk b2 (K2 (i, sb1, k))

| K2 (i , sb1, k) →
let sb2 = n in

apply k (i + sb1 + sb2)

let rec sum b =

sumk b K0

4

Question 3. Type Systems (25 points).

a. (8 points) Assume that int < float. Write down every type t such that t ≤ float → int → float, following
standard subtyping rules.

Answer:

1. float → int → float

2. float → float → float

3. float → int → int

4. float → float → int

b. (2 points) Assume that int < float. Write down every type t such that t ≤ int ref → float ref, following
standard subtyping rules.

Answer:
int ref → float ref

5

c. (5 points) Recall the simply typed lambda calculus:

e ::= n | x | λx: t.e | e e
t ::= int | t → t
A ::= ∅ | x: t, A

Int

A ⊢ n : int

Var

A ⊢ x : A(x)

Lam
x: t, A ⊢ e : t′

A ⊢ (λx: t.e) : t → t′

App
A ⊢ e1 : t → t′ A ⊢ e2 : t

A ⊢ e1 e2 : t′

Draw a derivation that the following type judgment holds, where A = +: int → int → int. (You can draw
the derivation upward from the judgment, and you can write i instead of int to save time):

Answer:

∇1 =

f : int → int, A ⊢ f : int → int f : int → int, A ⊢ 1 : int

f : int → int, A ⊢ f 1 : int

A ⊢ λf : int → int.f 1 : (int → int) → int

∇2 =

x: int, A ⊢ + : int → int x: int, A ⊢ 1 : int

x: int, A ⊢ + 1 : int → int x: int, A ⊢ x : int

x: int, A ⊢ + 1 x : int

A ⊢ λx: int.+ 1 x : int

∇1 ∇2

A ⊢ ((λf : int → int.f 1) (λx: int.+ 1 x)) : int

A ⊢ ((λf : int → int.f 1) (λx: int.+ 1 x)) : int

6

d. (10 points) Perform type inference on the following program by listing the types that OCaml will infer
for the blanks:

let rec bumble (f :) (xs :) : =

match xs with

| [] → []

| x :: xs →
((x (”fred” ˆ (f 0))) + 1) :: (bumble f xs)

Answer:

let rec bumble (f : (int → string)) (xs : (string → int) list) : int list =

match xs with

| [] → []

| x :: xs →
((x (”fred” ˆ (f 0))) + 1) :: (bumble f xs)

7

