FSTs, HMMs & POS tagging

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT
marine@cs.umd.edu
Complete Morphological Parser

```
fox +N +PL
```

```
lexicon-FST
```

```
fox ^ s #
```

```
FST₁ orthographic rules FSTₙ
```

```
foxes
```
Practical NLP Applications

• In practice, it is almost never necessary to write FSTs by hand...

• Typically, one writes rules:
 – Chomsky and Halle Notation: \(a \rightarrow b / c__d \)
 = rewrite \(a \) as \(b \) when occurs between \(c \) and \(d \)
 – E-Insertion rule
 \[
 \varepsilon \rightarrow e / \begin{cases} x \\ s \\ z \end{cases} \uparrow ___ s \#
 \]

• Rule → FST compiler handles the rest...
FSTs and Ambiguity

- unionizable
 - union ize able
 - un+ ion ize able
Weighted FSA as a language model
Weighted FSAs

• Assigns a score to each string that it accepts

• Score can be probability
 – But not necessary
 – Strings that are not accepted are said to have probability zero
Weighted Finite-State Automata

• We can view n-gram language models as weighted finite state automata

• We can also define weighted finite-state transducers
 – Generates pairs of strings and assigns a weight to each pair
 – Weight can often be interpreted as conditional probability $P(\text{output-string} \mid \text{input-string})$
Today

• Computational tools
 – Weighted Finite State Automata/Transducers
 – Hidden Markov Models

• Part-of-Speech Tagging
WHAT ARE PARTS OF SPEECH?
Parts of Speech

• “Equivalence class” of linguistic entities
 – “Categories” or “types” of words

• Study dates back to the ancient Greeks
 – Dionysius Thrax of Alexandria (c. 100 BC)
 – 8 parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, participle, article
 – Remarkably enduring list!
How can we define POS?

• By meaning?
 – Verbs are actions
 – Adjectives are properties
 – Nouns are things

• By the syntactic environment
 – What occurs nearby?
 – What does it act as?

• By what morphological processes affect it
 – What affixes does it take?

• Typically combination of syntactic+morphology
Parts of Speech

• Open class
 – Impossible to completely enumerate
 – New words continuously being invented, borrowed, etc.

• Closed class
 – Closed, fixed membership
 – Reasonably easy to enumerate
 – Generally, short function words that “structure” sentences
Open Class POS

• Four major open classes in English
 – Nouns
 – Verbs
 – Adjectives
 – Adverbs

• All languages have nouns and verbs... but may not have the other two
Nouns

• Open class
 – New inventions all the time: muggle, webinar, ...

• Semantics:
 – Generally, words for people, places, things
 – But not always (bandwidth, energy, ...)

• Syntactic environment:
 – Occurring with determiners
 – Pluralizable, possessivizable

• Other characteristics:
 – Mass vs. count nouns
Verbs

• Open class
 – New inventions all the time: google, tweet, ...

• Semantics
 – Generally, denote actions, processes, etc.

• Syntactic environment
 – E.g., Intransitive, transitive

• Other characteristics
 – Main vs. auxiliary verbs
 – Gerunds (verbs behaving like nouns)
 – Participles (verbs behaving like adjectives)
Adjectives and Adverbs

• Adjectives
 – Generally modify nouns, e.g., *tall* girl

• Adverbs
 – A semantic and formal hodge-podge…
 – Sometimes modify verbs, e.g., sang *beautifully*
 – Sometimes modify adjectives, e.g., *extremely* hot
Closed Class POS

• Prepositions
 – In English, occurring before noun phrases
 – Specifying some type of relation (spatial, temporal, ...)
 – Examples: on the shelf, before noon

• Particles
 – Resembles a preposition, but used with a verb ("phrasal verbs")
 – Examples: find out, turn over, go on
Particle vs. Prepositions

He came *by* the office in a hurry
(by = preposition)

He came *by* his fortune honestly
(by = particle)

We ran *up* the phone bill
(up = particle)

We ran *up* the small hill
(up = preposition)

He lived *down* the block
(down = preposition)

He never lived *down* the nicknames
(down = particle)
More Closed Class POS

• Determiners
 – Establish reference for a noun
 – Examples: *a, an, the* (articles), *that, this, many, such, ...*

• Pronouns
 – Refer to person or entities: *he, she, it*
 – Possessive pronouns: *his, her, its*
 – Wh-pronouns: *what, who*
Closed Class POS: Conjunctions

• Coordinating conjunctions
 – Join two elements of “equal status”
 – Examples: cats and dogs, salad or soup

• Subordinating conjunctions
 – Join two elements of “unequal status”
 – Examples: We’ll leave after you finish eating. While I was waiting in line, I saw my friend.
 – Complementizers are a special case: I think that you should finish your assignment
Beyond English...

Chinese
No verb/adjective distinction! 漂亮: beautiful/to be beautiful

Riau Indonesian/Malay
No Articles
No Tense Marking
3rd person pronouns neutral to both gender and number
No features distinguishing verbs from nouns

Ayam (chicken) Makan (eat)

The chicken is eating
The chicken ate
The chicken will eat
Where the chicken is being eaten
How the chicken is eating
Somebody is eating the chicken
The chicken that is eating
POS TAGGING
POS Tagging: What’s the task?

• Process of assigning part-of-speech tags to words

• But what tags are we going to assign?
 – Coarse grained: noun, verb, adjective, adverb, ...
 – Fine grained: {proper, common} noun
 – Even finer-grained: {proper, common} noun ± animate

• Important issues to remember
 – Choice of tags encodes certain distinctions/non-distinctions
 – Tagsets will differ across languages!

• For English, Penn Treebank is the most common tagset
Penn Treebank Tagset: 45 Tags

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
<th>Tag</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>coordin. conjunction</td>
<td>and, but, or</td>
<td>SYM</td>
<td>symbol</td>
<td>+, %, &</td>
</tr>
<tr>
<td>CD</td>
<td>cardinal number</td>
<td>one, two, three</td>
<td>TO</td>
<td>“to”</td>
<td>to</td>
</tr>
<tr>
<td>DT</td>
<td>determiner</td>
<td>a, the</td>
<td>UH</td>
<td>interjection</td>
<td>ah, oops</td>
</tr>
<tr>
<td>EX</td>
<td>existential ‘there’</td>
<td>there</td>
<td>VB</td>
<td>verb, base form</td>
<td>eat</td>
</tr>
<tr>
<td>FW</td>
<td>foreign word</td>
<td>mea culpa</td>
<td>VBD</td>
<td>verb, past tense</td>
<td>ate</td>
</tr>
<tr>
<td>IN</td>
<td>preposition/sub-conj</td>
<td>of, in, by</td>
<td>VBG</td>
<td>verb, gerund</td>
<td>eating</td>
</tr>
<tr>
<td>JJ</td>
<td>adjective</td>
<td>yellow</td>
<td>VBN</td>
<td>verb, past participle</td>
<td>eaten</td>
</tr>
<tr>
<td>JJR</td>
<td>adj., comparative</td>
<td>bigger</td>
<td>VBP</td>
<td>verb, non-3sg pres</td>
<td>eat</td>
</tr>
<tr>
<td>JJS</td>
<td>adj., superlative</td>
<td>wildest</td>
<td>VBZ</td>
<td>verb, 3sg pres</td>
<td>eats</td>
</tr>
<tr>
<td>LS</td>
<td>list item marker</td>
<td>1, 2, One</td>
<td>WDT</td>
<td>wh-determiner</td>
<td>which, that</td>
</tr>
<tr>
<td>MD</td>
<td>modal</td>
<td>can, should</td>
<td>WP</td>
<td>wh-pronoun</td>
<td>what, who</td>
</tr>
<tr>
<td>NN</td>
<td>noun, sing. or mass</td>
<td>llama</td>
<td>WP$</td>
<td>possessive wh-</td>
<td>whose</td>
</tr>
<tr>
<td>NNS</td>
<td>noun, plural</td>
<td>lamas</td>
<td>WRB</td>
<td>wh-adverb</td>
<td>how, where</td>
</tr>
<tr>
<td>NNP</td>
<td>proper noun, singular</td>
<td>IBM</td>
<td>$</td>
<td>dollar sign</td>
<td>$</td>
</tr>
<tr>
<td>NNPS</td>
<td>proper noun, plural</td>
<td>Carolinas</td>
<td>#</td>
<td>pound sign</td>
<td>#</td>
</tr>
<tr>
<td>PDT</td>
<td>predeterminer</td>
<td>all, both</td>
<td>“</td>
<td>left quote</td>
<td>‘ or “</td>
</tr>
<tr>
<td>POS</td>
<td>possessive ending</td>
<td>’s</td>
<td>”</td>
<td>right quote</td>
<td>‘ or ”</td>
</tr>
<tr>
<td>PRP</td>
<td>personal pronoun</td>
<td>I, you, he</td>
<td>(</td>
<td>left parenthesis</td>
<td>[, (, {, <</td>
</tr>
<tr>
<td>PRP$</td>
<td>possessive pronoun</td>
<td>your, one’s</td>
<td>)</td>
<td>right parenthesis</td>
<td>],), }, ></td>
</tr>
<tr>
<td>RB</td>
<td>adverb</td>
<td>quickly, never</td>
<td>,</td>
<td>comma</td>
<td>.</td>
</tr>
<tr>
<td>RBR</td>
<td>adverb, comparative</td>
<td>faster</td>
<td>.</td>
<td>sentence-final punc</td>
<td>! ?</td>
</tr>
<tr>
<td>RBS</td>
<td>adverb, superlative</td>
<td>fastest</td>
<td>:</td>
<td>mid-sentence punc</td>
<td>: ; ... - -</td>
</tr>
</tbody>
</table>
Penn Treebank Tagset: Choices

• Example:
 – The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

• Distinctions and non-distinctions
 – Prepositions and subordinating conjunctions are tagged “IN” (“Although/IN I/PRP."
 – Except the preposition/complementizer “to” is tagged “TO”
Why do POS tagging?

• One of the most basic NLP tasks
 – Nicely illustrates principles of statistical NLP

• Useful for higher-level analysis
 – Needed for syntactic analysis
 – Needed for semantic analysis

• Sample applications that require POS tagging
 – Machine translation
 – Information extraction
 – Lots more...
Try your hand at tagging...

• The **back** door
• On my **back**
• Win the voters **back**
• Promised to **back** the bill
Try your hand at tagging...

• I hope that she wins
• That day was nice
• You can go that far
Why is POS tagging hard?

• Ambiguity!

 – Ambiguity in English
 • 11.5% of word types ambiguous in Brown corpus
 • 40% of word tokens ambiguous in Brown corpus
 • Annotator disagreement in Penn Treebank: 3.5%
POS tagging: how to do it?

• Given Penn Treebank, how would you build a system that can POS tag new text?

• Baseline: pick most frequent tag for each word type
 – 90% accuracy if train+test sets are drawn from Penn Treebank

• How can we do better?
HOW TO SOLVE POS TAGGING?
How can we POS tag automatically?

• POS tagging as multiclass classification
 – What is x? What is y?

• POS tagging as sequence labeling
 – Models sequences of predictions
Hidden Markov Models

• Common approach to sequence labeling

• A finite state machine with probabilistic transitions

• Markov Assumption
 – next state only depends on the current state and independent of previous history
Hidden Markov Models (HMM) for POS tagging

• Probabilistic model for generating sequences
 – e.g., word sequences

• Assume
 – underlying set of hidden (unobserved) states in which the model can be (e.g., POS)
 – probabilistic transitions between states over time (e.g., from POS to POS in order)
 – probabilistic generation of (observed) tokens from states (e.g., words generate for each POS)
HMM for POS tagging: intuition
HMM for POS tagging: intuition

Credit: Jordan Boyd Graber
HMM: Formal Specification

- **Q**: a finite set of *N* states
 - \(Q = \{q_0, q_1, q_2, q_3, \ldots\} \)

- **\(N \times N \)** Transition probability matrix \(A = [a_{ij}] \)
 - \(a_{ij} = P(q_j|q_i), \sum a_{ij} = 1 \ \forall i \)

- **Sequence of observations** \(O = o_1, o_2, \ldots, o_T \)
 - Each drawn from a given set of symbols (vocabulary \(V \))

- **\(N \times |V| \)** Emission probability matrix, \(B = [b_{it}] \)
 - \(b_{it} = b_i(o_t) = P(o_t|q_i), \sum b_{it} = 1 \ \forall i \)

- **Start and end states**
 - An explicit start state \(q_0 \) or alternatively,
 a prior distribution over start states: \(\{\pi_1, \pi_2, \pi_3, \ldots\} \), \(\sum \pi_i = 1 \)
 - The set of final states: \(q_F \)
Let’s model the stock market...

Day: 1 2 3 4 5 6

Not observable!

Bull Bear S Bear S Bull

Here’s what you actually observe:

↑ ↓ ↔ ↑ ↓ ↔

Bull: Bull Market
Bear: Bear Market
S: Static Market

↑: Market is up
↓: Market is down
↔: Market hasn’t changed

Credit: Jimmy Lin
Stock Market HMM

- States?
- Transitions?
- Vocabulary?
- Emissions?
- Priors?
Stock Market HMM

States? ✓
Transitions? ✓
Vocabulary?
Emissions?
Priors?
Stock Market HMM

States? ✓
Transitions? ✓
Vocabulary? ✓
Emissions?
Priors?

$V = \{\uparrow, \downarrow, \leftrightarrow\}$
Stock Market HMM

States? ✓
Transitions? ✓
Vocabulary? ✓
Emissions? ✓
Priors?

\[
P(\uparrow | \text{Bear}) = 0.1 \\
P(\downarrow | \text{Bear}) = 0.6 \\
P(\leftrightarrow | \text{Bear}) = 0.3 \\
P(\uparrow | \text{Bull}) = 0.7 \\
P(\downarrow | \text{Bull}) = 0.1 \\
P(\leftrightarrow | \text{Bull}) = 0.2 \\
P(\uparrow | \text{Static}) = 0.3 \\
P(\downarrow | \text{Static}) = 0.3 \\
P(\leftrightarrow | \text{Static}) = 0.4
\]

\[V = \{\uparrow, \downarrow, \leftrightarrow\}\]
Stock Market HMM

States? ✓
Transitions? ✓
Vocabulary? ✓
Emissions? ✓
Priors? ✓

\[
\begin{align*}
P(\uparrow | \text{Bear}) &= 0.1 \\
P(\downarrow | \text{Bear}) &= 0.6 \\
P(\leftrightarrow | \text{Bear}) &= 0.3 \\
P(\uparrow | \text{Bull}) &= 0.7 \\
P(\downarrow | \text{Bull}) &= 0.1 \\
P(\leftrightarrow | \text{Bull}) &= 0.2 \\
P(\uparrow | \text{Static}) &= 0.3 \\
P(\downarrow | \text{Static}) &= 0.3 \\
P(\leftrightarrow | \text{Static}) &= 0.4 \\
\end{align*}
\]

\[V = \{\uparrow, \downarrow, \leftrightarrow\}\]
Properties of HMMs

• The (first-order) Markov assumption holds

• The probability of an output symbol depends only on the state generating it

\[P(o_t|q_1, q_2, \ldots, q_N, o_1, o_2, \ldots, o_T) = P(o_t|q_i) \]

• The number of states (N) does not have to equal the number of observations (T)
HMMs: Three Problems

• **Likelihood**: Given an HMM $\lambda = (A, B, \pi)$, and a sequence of observed events O, find $P(O|\lambda)$

• **Decoding**: Given an HMM $\lambda = (A, B, \pi)$, and an observation sequence O, find the most likely (hidden) state sequence

• **Learning**: Given a set of observation sequences and the set of states Q in λ, compute the parameters A and B
HMM Problem #1: Likelihood
Assuming λ_{stock} models the stock market, how likely are we to observe the sequence of outputs?
Computing Likelihood

• First try:
 – Sum over all possible ways in which we could generate O from λ

$$P(O|\lambda) = \sum_Q P(O, Q|\lambda) = \sum_Q P(O|Q, \lambda)P(Q|\lambda)$$

$$= \sum_{q_1, q_2 \ldots q_T} \pi_{q_1} b_{q_1}(o_1)a_{q_1q_2}\ldots a_{q_{T-1}q_T} b_{q_T}(o_T)$$

Takes $O(N^T)$ time to compute!

 – What’s the problem?

• Right idea, wrong algorithm!
Computing Likelihood

• What are we doing wrong?
 – State sequences may have a lot of overlap...
 – We’re recomputing the shared subsequences every time
 – Let’s store intermediate results and reuse them!
 – Can we do this?

• Sounds like a job for dynamic programming!
Forward Algorithm

- Use an $N \times T$ trellis or chart $[\alpha_{tj}]$
- **Forward probabilities**: α_{tj} or $\alpha_t(j)$
 - $= P($being in state j after seeing t observations$)$
 - $= P(o_1, o_2, \ldots, o_t, q_t=j)$
- Each cell $= \sum$ extensions of all paths from other cells
 - $\alpha_t(j) = \sum_i \alpha_{t-1}(i) a_{ij} b_j(o_t)$
 - $\alpha_{t-1}(i)$: forward path probability until $(t-1)$
 - a_{ij}: transition probability of going from state i to j
 - $b_j(o_t)$: probability of emitting symbol o_t in state j
- $P(O|\lambda) = \sum_i \alpha_T(i)$
Forward Algorithm: Formal Definition

• Initialization
\[\alpha_1(j) = \pi_j b_j(o_1), 1 \leq j \leq N \]

• Recursion
\[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t); 1 \leq j \leq N, 2 \leq t \leq T \]

• Termination
\[P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i) \]
Forward Algorithm

\[O = \uparrow \downarrow \uparrow \]

find \(P(O | \lambda_{stock}) \)
Forward Algorithm

states

Static

Bear

Bull

time

↑

↑

↓

↑

↑
Forward Algorithm: Initialization

\[\alpha_1(j) = \pi_j b_j(o_1), 1 \leq j \leq N \]

- **Static**
 \[\alpha_1(\text{Static}) = 0.3 \times 0.3 = 0.09 \]

- **Bear**
 \[\alpha_1(\text{Bear}) = 0.5 \times 0.1 = 0.05 \]

- **Bull**
 \[\alpha_1(\text{Bull}) = 0.2 \times 0.7 = 0.14 \]

Time evolution:
- \(t=1 \)
- \(t=2 \)
- \(t=3 \)
Forward Algorithm: Recursion

\[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \leq j \leq N, \quad 2 \leq t \leq T \]

..., and so on

- **Static**
 - 0.3 \times 0.3 = 0.09

- **Bear**
 - 0.5 \times 0.1 = 0.05

- **Bull**
 - 0.2 \times 0.7 = 0.14

- 0.0145

- 0.14 \times 0.6 \times 0.1 = 0.0084

- \alpha_1(Bull) \times a_{BullBull} \times b_{Bull}(\downarrow)

- 0.09 \times 0.4 \times 0.1 = 0.0036

- 0.05 \times 0.5 \times 0.1 = 0.0025

- t=1

- t=2

- t=3

- time
Forward Algorithm: Recursion

Work through the rest of these numbers...

Static
- $0.3 \times 0.3 = 0.09$
- ?
- ?

Bear
- $0.5 \times 0.1 = 0.05$
- ?
- ?

Bull
- $0.2 \times 0.7 = 0.14$
- 0.0145
- ?

↑ t=1
↓ t=2
↑ t=3

time

What’s the asymptotic complexity of this algorithm?
HMMs: Three Problems

- **Likelihood:** Given an HMM $\lambda = (A, B, \Pi)$, and a sequence of observed events O, find $P(O|\lambda)$

- **Decoding:** Given an HMM $\lambda = (A, B, \Pi)$, and an observation sequence O, find the most likely (hidden) state sequence

- **Learning:** Given a set of observation sequences and the set of states Q in λ, compute the parameters A and B
Today

• Computational tools
 – Weighted Finite State Automata/Transducers
 – Hidden Markov Models

• Part-of-Speech Tagging