Dependency Parsing

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT
marine@cs.umd.edu

Slides credit: Joakim Nivre & Ryan McDonald
Agenda

• Formalizing dependency graphs
• Formalizing transition-based parsing
 – Graph-based
 – Transition-based

most material based on Kubler, McDonald & Nivre
Dependencies

- **Typed**: Label indicating relationship between words

I saw a girl with a telescope

- **Untyped**: Only which words depend

I saw a girl with a telescope
Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs

Input: x
Output: dependency graph/tree G

Can be framed as a structured prediction task
- very large output space
- with interdependent labels
FORMALIZING DEPENDENCY REPRESENTATIONS
Dependency Graphs

- A dependency structure can be defined as a directed graph G, consisting of
 - a set V of nodes (vertices),
 - a set A of arcs (directed edges),
 - a linear precedence order $<$ on V (word order).

- Labeled graphs:
 - Nodes in V are labeled with word forms (and annotation).
 - Arcs in A are labeled with dependency types:
 - $L = \{l_1, \ldots, l_{|L|}\}$ is the set of permissible arc labels.
 - Every arc in A is a triple (i, j, k), representing a dependency from w_i to w_j with label l_k.
Dependency Graph Notation

- For a dependency graph $G = (V, A)$
- With label set $L = \{l_1, \ldots, l_{|L|}\}$
 - $i \to j \equiv \exists k : (i, j, k) \in A$
 - $i \leftrightarrow j \equiv i \to j \lor j \to i$
 - $i \rightarrow* j \equiv i = j \lor \exists i' : i \rightarrow i', i' \rightarrow* j$
 - $i \leftarrow* j \equiv i = j \lor \exists i' : i \leftarrow i', i' \leftarrow* j$
Properties of Dependency Trees

- **G** is (weakly) connected:
 - If $i, j \in V$, $i \leftrightarrow^* j$.

- **G** is acyclic:
 - If $i \rightarrow j$, then not $j \rightarrow^* i$.

- **G** obeys the single-head constraint:
 - If $i \rightarrow j$, then not $i' \rightarrow j$, for any $i' \neq i$.

- **G** is projective:
 - If $i \rightarrow j$, then $i \rightarrow^* i'$, for any i' such that $i < i' < j$ or $j < i' < i$.
Economic news had little effect on financial markets.
Non-Projectivity

- Most theoretical frameworks do not assume projectivity
- Non-projective structures are needed to represent
 - Long-distance dependencies
 - Free word order
GRAPH-BASED PARSING
Directed Spanning Trees

- A directed spanning tree of a (multi-)digraph $G = (V, A)$, is a subgraph $G' = (V', A')$ such that:
 - $V' = V$
 - $A' \subseteq A$, and $|A'| = |V'| - 1$
 - G' is a tree (acyclic)

- A spanning tree of the following (multi-)digraphs
Maximum Spanning Tree

• Assume we have an **arc factored** model
 i.e. weight of graph can be factored as sum or product of weights of its arcs

• Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us!
 – Greedy recursive algorithm
 – Naïve implementation: $O(n^3)$
Chu-Liu-Edmonds illustrated
Chu-Liu-Edmonds illustrated

- Find highest scoring incoming arc for each vertex

```
root

20 ← saw → 30

John ← 30 → Mary
```

- If this is a tree, then we have found MST!!
Chu-Liu-Edmonds illustrated

- If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle
Chu-Liu-Edmonds illustrated

- Outgoing arc weights
 - Equal to the max of outgoing arc over all vertexes in cycle
 - e.g., John → Mary is 3 and saw → Mary is 30
Chu-Liu-Edmonds illustrated

- **Incoming arc weights**
 - Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
 - root → saw → John is 40 (***)
 - root → John → saw is 29
This is a tree and the MST for the contracted graph!!

Go back up recursive call and reconstruct final graph
Arc weights as linear classifiers

\[w^k_{ij} = e^{\mathbf{w} \cdot \mathbf{f}(i,j,k)} \]

- Arc weights are a linear combination of features of the arc, \(\mathbf{f} \), and a corresponding weight vector \(\mathbf{w} \)
- Raised to an exponent (simplifies some math ...)
- What arc features?
- [McDonald et al. 2005] discuss a number of binary features
Example of classifier features

Features from [McDonald et al. 2005]:
- Identities of the words w_i and w_j and the label l_k

head = saw & dependent = with
How to score a graph G using features?

Arc-factored model assumption

By definition of arc weights as linear classifiers

$$G = \arg \max_{G \in T(G_x)} \prod_{(i,j,k) \in G} w_{ij}^k = \arg \max_{G \in T(G_x)} \prod_{(i,j,k) \in G} e^{w \cdot f(i,j,k)}$$

$$= \arg \max_{G \in T(G_x)} \log \prod_{(i,j,k) \in G} e^{w \cdot f(i,j,k)}$$

$$= \arg \max_{G \in T(G_x)} \sum_{(i,j,k) \in G} w \cdot f(i,j,k)$$

$$= \arg \max_{G \in T(G_x)} w \cdot \sum_{(i,j,k) \in G} f(i,j,k) = \arg \max_{G \in T(G_x)} w \cdot f(G)$$
How can we learn the classifier from data?

E.g., The Perceptron

Training data: \(\mathcal{T} = \{(x_t, G_t)\}_{t=1}^{T} \)

1. \(\mathbf{w}^{(0)} = 0; \ i = 0 \)
2. for \(n : 1..N \)
3. for \(t : 1..T \)
4. Let \(G' = \arg \max_{G'} \mathbf{w}^{(i)} \cdot f(G') \)
5. if \(G' \neq G_t \)
6. \(\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + f(G_t) - f(G') \)
7. \(i = i + 1 \)
8. return \(\mathbf{w}^i \)
TRANSITION-BASED DEPENDENCY PARSER
Transition-based parsing

- A transition system for dependency parsing is a quadruple \(S = (C, T, c_s, C_t) \), where
 1. \(C \) is a set of configurations, each of which contains a buffer \(\beta \) of (remaining) nodes and a set \(A \) of dependency arcs,
 2. \(T \) is a set of transitions, each of which is a (partial) function \(t : C \to C \),
 3. \(c_s \) is an initialization function, mapping a sentence \(x = w_0, w_1, \ldots, w_n \) to a configuration with \(\beta = [1, \ldots, n] \),
 4. \(C_t \subseteq C \) is a set of terminal configurations.

- Note:
 - A configuration represents a parser state.
 - A transition represents a parsing action (parser state update).
Transition-based parsing

Let $S = (C, T, c_s, C_t)$ be a transition system.

A transition sequence for a sentence $x = w_0, w_1, \ldots, w_n$ in S is a sequence $C_{0,m} = (c_0, c_1, \ldots, c_m)$ of configurations, such that

1. $c_0 = c_s(x)$,
2. $c_m \in C_t$,
3. for every i ($1 \leq i \leq m$), $c_i = t(c_{i-1})$ for some $t \in T$.

The parse assigned to x by $C_{0,m}$ is the dependency graph $G_{c_m} = (\{0, 1, \ldots, n\}, A_{c_m})$, where A_{c_m} is the set of dependency arcs in c_m.
Deterministic parsing with an oracle

An **oracle** for a transition system $S = (C, T, c_s, C_t)$ is a function $o : C \rightarrow T$.

Given a transition system $S = (C, T, c_s, C_t)$ and an oracle o, **deterministic parsing** can be achieved by the following simple algorithm:

```
Parse($x = (w_0, w_1, \ldots, w_n)$)
1 \hspace{1em} c \leftarrow c_s(x)
2 \hspace{1em} \textbf{while} \hspace{0.5em} c \notin C_t
3 \hspace{1em} c = [o(c)](c)
4 \hspace{1em} \textbf{return} \hspace{0.5em} G_c
```
A stack-based configuration for a sentence \(x = w_0, w_1, \ldots, w_n \) is a triple \(c = (\sigma, \beta, A) \), where

1. \(\sigma \) is a stack of tokens \(i \leq m \) (for some \(m \leq n \)),
2. \(\beta \) is a buffer of tokens \(j > m \),
3. \(A \) is a set of dependency arcs such that \(G = (\{0, 1, \ldots, n\}, A) \) is a dependency graph for \(x \).

A stack-based transition system is a quadruple \(S = (C, T, c_s, C_t) \), where

1. \(C \) is the set of all stack-based configurations,
2. \(c_s(x = w_0, w_1, \ldots, w_n) = ([0], [1, \ldots, n], \emptyset) \),
3. \(T \) is a set of transitions, each of which is a function \(t : C \to C \),
4. \(C_t = \{ c \in C | c = (\sigma, [], A) \} \).
Transitions & Preconditions

- **Transitions:**
 - **Left-Arc\(_k\):**
 \[(\sigma|i, j|\beta, A) \Rightarrow (\sigma, j|\beta, A\cup\{(j, i, k)\})\]
 - **Right-Arc\(_k\):**
 \[(\sigma|i, j|\beta, A) \Rightarrow (\sigma, i|\beta, A\cup\{(i, j, k)\})\]
 - **Shift:**
 \[(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)\]

- **Preconditions:**
 - **Left-Arc\(_k\):**
 \[-[i = 0]\]
 \[-\exists i' \exists k'[(i', i, k') \in A]\]
 - **Right-Arc\(_k\):**
 \[-\exists i' \exists k'[(i', j, k') \in A]\]
Let’s try it out...

- **Transitions:**
 - **Left-Arc**
 \[(\sigma | i, j | \beta, A) \Rightarrow (\sigma, j | \beta, A \cup \{(j, i, k)\})\]
 - **Right-Arc**
 \[(\sigma | i, j | \beta, A) \Rightarrow (\sigma, i | \beta, A \cup \{(i, j, k)\})\]
 - **Shift**
 \[(\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)\]

- **Preconditions:**
 - **Left-Arc**
 \[\neg [i = 0]\]
 \[\neg \exists i' \exists k' [(i', i, k') \in A]\]
 - **Right-Arc**
 \[\neg \exists i' \exists k' [(i', j, k') \in A]\]

\[\text{[root}_0\text{]}_{\sigma} \text{ [Economic}_1\text{ news}_2\text{ had}_3\text{ little}_4\text{ effect}_5\text{ on}_6\text{ financial}_7\text{ markets}_8\text{ .}_9\text{]}_{\beta}\]
A few steps illustrated...

\[
\begin{align*}
\text{root}_0 & \quad \text{Economic}_1 \quad \text{news}_2 \quad \text{had}_3 \quad \text{little}_4 \quad \text{effect}_5 \quad \text{on}_6 \sigma \quad \text{financial}_7 \quad \text{markets}_8 \quad .9 \beta \\
\text{Left-Arc}_{nmod} &
\end{align*}
\]
A few steps illustrated...