Logical & Shallow Semantics

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT
marine@cs.umd.edu
Recall: A CFG specification of the syntax of First Order Logic Representations

\[
\begin{align*}
\text{Formula} & \rightarrow \text{AtomicFormula} \\
& \quad | \quad \text{Formula Connective Formula} \\
& \quad | \quad \text{Quantifier Variable, \ldots Formula} \\
& \quad | \quad \neg \text{Formula} \\
& \quad | \quad (\text{Formula}) \\
\text{AtomicFormula} & \rightarrow \text{Predicate}(\text{Term}, \ldots) \\
\text{Term} & \rightarrow \text{Function}(\text{Term}, \ldots) \\
& \quad | \quad \text{Constant} \\
& \quad | \quad \text{Variable} \\
\text{Connective} & \rightarrow \land | \lor | \Rightarrow \\
\text{Quantifier} & \rightarrow \forall | \exists \\
\text{Constant} & \rightarrow \text{A} | \text{VegetarianFood} | \text{Maharani} \cdots \\
\text{Variable} & \rightarrow x | y | \cdots \\
\text{Predicate} & \rightarrow \text{Serves} | \text{Near} | \cdots \\
\text{Function} & \rightarrow \text{LocationOf} | \text{CuisineOf} | \cdots
\end{align*}
\]
Principle of Compositionality

• The meaning of a whole is derived from the meanings of the parts

• What parts?
 – The constituents of the syntactic parse of the input
Augmented Rules

• We’ll accomplish this by attaching semantic formation rules to our syntactic CFG rules

• Abstractly

\[A \rightarrow \alpha_1...\alpha_n \quad \{ f(\alpha_1.sem,...\alpha_n.sem) \} \]

– This should be read as: “the semantics we attach to A can be computed from some function applied to the semantics of A’s parts.”
Compositional Analysis: use syntax to guide semantic analysis
Example

- Lexicon: attaches semantics to individual words

 - PropNoun -> Frasca \{Frasca\}
 - PropNoun -> Franco \{Franco\}
 - Verb -> likes \(\lambda x \lambda y \exists e Liking(e) \land Liker(e, y) \land Liked(e, x) \)

- Composition rules

 - S -> NP VP VP.sem(NP.sem)
 - VP -> Verb NP Verb.sem(NP.sem)
Complications: Complex NPs

– The previous example simplified things by only dealing with constants (FOL Terms).

– What about...
 • A menu
 • Every restaurant
 • Not every waiter
 • Most restaurants
Complications: Complex NPs

– The previous example simplified things by only dealing with constants (FOL Terms).

– What about...
 • A menu
 • Every restaurant
 • Not every waiter
 • Most restaurants
Complex NPs: Example

Every restaurant closed.

\(\forall x \, \text{Restaurant}(x) \Rightarrow \exists e \, \text{Closed}(e) \land \text{ClosedThing}(e, x) \)
Complex NPs: Example

- Roughly “every” in an NP like this is used to stipulate something (VP) about every member of the class (NP)

- So the NP can be viewed as the following template

\[\forall x \text{Restaurant}(x) \Rightarrow Q(x) \]
Complex NPs: Example

• But that’s not combinable with anything so wrap a lambda around it...

$$\lambda Q. \forall x \text{Restaurant}(x) \Rightarrow Q(x)$$

• Note: this requires a change to the kind of things that we’ll allow lambda variables to range over...
 – Now its both FOL predicates and terms.
Resulting CFG rules augmented with semantics

\[NP \rightarrow Det\ Nominal \quad \{Det.\text{Sem}(Nominal.\text{Sem})\} \]

\[Det \rightarrow \text{every} \quad \{\lambda P.\lambda Q.\forall x P(x) \Rightarrow Q(x)\} \]

\[Nominal \rightarrow Noun \quad \{Noun.\text{sem}\} \]

\[Noun \rightarrow \text{restaurant} \quad \{\lambda x.\text{Restaurant}(x)\} \]
Every Restaurant Closed
Note on S Rule

– For “Franco likes Frasca”
 • We were applying the semantics of the VP to the semantics of the NP
 $S \rightarrow NP\ VP\ \ VP.Sem(NP.Sem)$

– “Every restaurant closed” requires a new rule
 $S \rightarrow NP\ VP\ \ NP.Sem(VP.Sem)$
Every Restaurant Closed
Recap: Logical Meaning Representations

• Representation based on **First Order Logic**
• In Syntax-driven semantic analysis, meaning of a phrase is **composed** by meaning of its syntactic constituents
• Compositional creation of FOL formulas requires extensions such as **lambda expressions**
• Logical representations offer a natural way to capture contradiction, entailment, synonymy
• Semantic parsers can be learned from data
 – E.g using latent variable perceptor
Semantic Parsing

• Task where
 – Input: a natural language sentence
 – Output: a semantic representation (such as FOL with lambda calculus)

• Parsers can be learned from data
Supervised Semantic Parsers

- Using gold logical analyses (e.g., Zettlemoyer & Collins [2005]*)
 - Each syntactic-semantic rule is a feature with a weight
 - Learning: latent variable perceptron

\[
\hat{y}, \hat{z} = \arg \max_{y, z} \theta^\top f(w, y, z)
\]

\[
\theta^{(t+1)} \leftarrow \theta^{(t)} + f(w, y, z^*) - f(w, \hat{y}, \hat{z}),
\]

*Note: uses Combinatory Categorial Grammars instead of CFGs
SEMANTIC ROLE LABELING

Slides Credit: William Cohen, Scott Yih, Kristina Toutanova
Yesterday, Kristina hit Scott with a baseball

Scott was hit by Kristina yesterday with a baseball

Yesterday, Scott was hit with a baseball by Kristina

With a baseball, Kristina hit Scott yesterday

Yesterday Scott was hit by Kristina with a baseball

Kristina hit Scott with a baseball yesterday

Agent, hitter Thing hit Instrument Temporal adjunct
Semantic Role Labeling – Giving Semantic Labels to Phrases

• \([\text{AGENT}\, \text{John}]\) broke \([\text{THEME}\, \text{the window}]\)

• \([\text{THEME}\, \text{The window}]\) broke

• \([\text{AGENT}\, \text{Sotheby’s}]\) .. offered \([\text{RECIPIENT}\, \text{the Dorrance heirs}]\)
 \([\text{THEME}\, \text{a money-back guarantee}]\)

• \([\text{AGENT}\, \text{Sotheby’s}]\) offered \([\text{THEME}\, \text{a money-back guarantee}]\) to
 \([\text{RECIPIENT}\, \text{the Dorrance heirs}]\)

• \([\text{THEME}\, \text{a money-back guarantee}]\) offered by \([\text{AGENT}\, \text{Sotheby’s}]\)

• \([\text{RECIPIENT}\, \text{the Dorrance heirs}]\) will \([\text{ARM-NEG}\, \text{not}]\)
 be offered \([\text{THEME}\, \text{a money-back guarantee}]\)
SRL: useful level of abstraction for many applications

• Question Answering
 – Q: When was Napoleon defeated?
 – Look for: $[\text{PATIENT Napoleon}]$ $[\text{PRED defeat-synset}]$ $[\text{ARGM-TMP *ANS*}]$

• Machine Translation
 English (SVO)
 $[\text{AGENT The little boy}]$ $[\text{PRED kicked}]$ $[\text{THEME the red ball}]$ $[\text{ARGM-MNR hard}]$
 Farsi (SOV)
 $[\text{AGENT pesar koocholo}]$ boy-little $[\text{THEME toop germezi}]$ ball-red $[\text{ARGM-MNR moqtam}]$ hard-adverb $[\text{PRED zaad-e}]$ hit-past

• Document Summarization
 – Predicates and Heads of Roles summarize content
SRL: REPRESENTATIONS & RESOURCES
FrameNet [Fillmore et al. 01]

Frame: Hit_target
(hit, pick off, shoot)

Lexical units (LUs):
Words that evoke the frame
(usually verbs)

Frame elements (FEs):
The involved semantic roles

[Agent Kristina] hit [Target Scott] [Instrument with a baseball] [Time yesterday].
Methodology for FrameNet

1. Define a frame (eg DRIVING)
2. Find some sentences for that frame
3. Annotate them

- Corpora
 - FrameNet I – British National Corpus only
 - FrameNet II – LDC North American Newswire corpora

- Size
 - >8,900 lexical units, >625 frames, >135,000 sentences

http://framenet.icsi.berkeley.edu
Proposition Bank (PropBank) [Palmer et al. 05]

- Transfer sentences to propositions
 - Kristina hit Scott → hit(Kristina, Scott)

- Penn TreeBank → PropBank
 - Add a semantic layer on Penn TreeBank
 - Define a set of semantic roles for each verb
 - Each verb’s roles are numbered

...[A0 the company] to ... offer [A1 a 15% to 20% stake] [A2 to the public]
...[A0 Sotheby’s] ... offered [A2 the Dorrance heirs] [A1 a money-back guarantee]
...[A1 an amendment] offered [A0 by Rep. Peter DeFazio] ...
...[A2 Subcontractors] will be offered [A1 a settlement] ...
Proposition Bank (PropBank)
Define the Set of Semantic Roles

• It’s difficult to define a general set of semantic roles for all types of predicates (verbs).
• PropBank defines semantic roles for each verb and sense in the frame files.
• The (core) arguments are labeled by numbers.
 – A0 – Agent; A1 – Patient or Theme
 – Other arguments – no consistent generalizations
• Adjunct-like arguments – universal to all verbs
 – AM-LOC, TMP, EXT, CAU, DIR, PNC, ADV, MNR, NEG, MOD, DIS
Proposition Bank (PropBank)
Frame Files

• hit.01 “strike”
 A0: agent, hitter; A1: thing hit; A2: instrument, thing hit by or with

 \[A_0 \text{Kristina} \text{hit} A_1 \text{Scott} \text{with a baseball} \text{yesterday.} \]

• look.02 “seeming”
 A0: seemer; A1: seemed like; A2: seemed to

 \[A_0 \text{It} \text{looked} A_2 \text{to her} \text{like} A_1 \text{he deserved this}. \]

• deserve.01 “deserve”
 A0: deserving entity; A1: thing deserved; A2: in-exchange-for

 \[\text{It looked to her like } A_0 \text{he} \text{deserved} A_1 \text{this}. \]
FrameNet vs PropBank

FRAMENET ANNOTATION:

PROPBNANK ANNOTATION:

[Arg0 Chuck] bought [Arg1 a car] [Arg2 from Jerry] [Arg3 for $1000].

[Arg0 Jerry] sold [Arg1 a car] [Arg2 to Chuck] [Arg3 for $1000].
FrameNet vs PropBank

FRAMENET ANNOTATION:

[Goods A car] was bought [Buyer by Chuck].
[Goods A car] was sold [Buyer to Chuck] [Seller by Jerry].
[Buyer Chuck] was sold [Goods a car] [Seller by Jerry].

PROPBNANK ANNOTATION:

[Arg1 A car] was bought [Arg0 by Chuck].
[Arg1 A car] was sold [Arg2 to Chuck] [Arg0 by Jerry].
[Arg2 Chuck] was sold [Arg1 a car] [Arg0 by Jerry].
Proposition Bank (PropBank)
Add a Semantic Layer

Kristina hit Scott with a baseball yesterday

[A0 Kristina] hit [A1 Scott] [A2 with a baseball] [AM-TMP yesterday].
Proposition Bank (PropBank) Statistics

• Proposition Bank I
 – Verb Lexicon: 3,324 frame files
 – Annotation: ~113,000 propositions
 http://www.cis.upenn.edu/~mpalmer/project_pages/ACE.htm

• Alternative format: CoNLL-04,05 shared task
 – Represented in table format
 – Has been used as standard data set for the shared tasks on semantic role labeling
 http://www.lsi.upc.es/~srlconll/soft.html
SRL: TASKS & SYSTEMS
Semantic Role Labeling: Subtasks

• **Identification**
 – Very hard task: to separate the argument substrings from the rest in this exponentially sized set
 – Usually only 1 to 9 (avg. 2.7) substrings have labels ARG and the rest have NONE for a predicate

• **Classification**
 – Given the set of substrings that have an ARG label, decide the exact semantic label

• **Core argument** semantic role labeling: (easier)
 – Label phrases with core argument labels only. The modifier arguments are assumed to have label NONE.
Evaluation Measures

Correct: \[A_0 \text{The queen} \] broke \[A_1 \text{the window} \] \[\text{AM-TMP yesterday} \]
Guess: \[A_0 \text{The queen} \] broke the \[A_1 \text{window} \] \[\text{AM-LOC yesterday} \]

<table>
<thead>
<tr>
<th>Correct</th>
<th>Guess</th>
</tr>
</thead>
<tbody>
<tr>
<td>{The queen} → A0</td>
<td>{The queen} → A0</td>
</tr>
<tr>
<td>{the window} → A1</td>
<td>{window} → A1</td>
</tr>
<tr>
<td>{yesterday} → AM-TMP</td>
<td>{yesterday} → AM-LOC</td>
</tr>
<tr>
<td>all other → NONE</td>
<td>all other → NONE</td>
</tr>
</tbody>
</table>

– Precision, Recall, F-Measure
– Measures for subtasks
 • Identification (Precision, Recall, F-measure)
 • Classification (Accuracy)
 • Core arguments (Precision, Recall, F-measure)
What information can we use for Semantic Role Labeling?

- Syntactic Parsers

- Shallow parsers

- Semantic ontologies (WordNet, automatically derived), and named entity classes

(v) **hit** (cause to move by striking)

WordNet hypernym

propel, impel (cause to move forward with force)
Arguments often correspond to syntactic constituents!

Most commonly, substrings that have argument labels correspond to syntactic constituents

- **In Propbank**, an argument phrase corresponds to exactly one parse tree constituent in the correct parse tree for 95.7% of the arguments;
- **In Propbank**, an argument phrase corresponds to exactly one parse tree constituent in Charniak’s automatic parse tree for approx 90.0% of the arguments.
- **In FrameNet**, an argument phrase corresponds to exactly one parse tree constituent in Collins’ automatic parse tree for 87% of the arguments.
Labeling Parse Tree Nodes

- Given a parse tree t, label the nodes (phrases) in the tree with semantic labels.
Combining Identification and Classification Models

Step 1. Pruning.
Using a hand-specified filter.

Step 2. Identification.
Identification model (filters out candidates with high probability of NONE)

Step 3. Classification.
Classification model assigns one of the argument labels to selected nodes (or sometimes possibly NONE)
Combining Identification and Classification Models

\[P(l|c, t, p) = P_{ID}(Id(l)|\Phi(c, t, p)) \times P_{CLS}(l|Id(l), \Phi(c, t, p)) \]

or

\[P(l|c, t, p) = P(l|\Phi(c, t, p)) \]

One Step.

Simultaneously identify and classify using \(P(l|c, t, p) \)
What are useful features?

- **Gildea & Jurafsky 2002**
 - Key early work
 - Future systems use these features as a baseline

- **Constituent Independent**
 - Target predicate (lemma)
 - Voice
 - Subcategorization

- **Constituent Specific**
 - Path
 - Position (*left, right*)
 - Phrase Type
 - Governing Category (*S* or *VP*)
 - Head Word

Example:

```
She broke the expensive vase

PRP VBD DT JJ NN
```

- **Target:** broke
- **Voice:** active
- **Subcategorization:** *VP* → *VBD NP*
- **Path:** *VBD* ↑ *VP* ↑ *S* ↓ *NP*
- **Position:** left
- **Phrase Type:** *NP*
- **Gov Cat:** *S*
- **Head Word:** She
She broke the expensive vase.
Recap: Semantic Role Labeling

- A shallow approach to semantics
- Useful for many applications
- Can leverage standard classification
- Requires manual creation of resources
 - FrameNet
 - PropBank