In order to compare problems & resources, we need a common language to describe problems.

Language: \(L \subseteq \{0,1\}^* \) (a language is a subset of the set of all binary strings)

Let \(f = \{f_n\}_{n=1}^\infty \) be a family of Boolean formulas

\[f_n: \{0,1\}^n \to \{0,1\}. \text{ Then } x \in L_f \text{ if } f_n(x) = 1 \text{ for } x \in \{0,1\}^n \]

\(x \in L \) if \(x \) has a factor \(\leq K \)

Questions?

What is a language that corresponds to the problem of eigenvalue estimation?

Divide input \(x \) into 2 halves \(\rightarrow x \) \begin{tabular}{|c|c|}
\hline
\end{tabular} \text{ then } x \in L \text{ if } U(x) e^{i\lambda_1} = e^{i\lambda_1} x \]

description of a circuit that creates a unitary \(U \) description of a circuit that creates a state \(|\psi\rangle \)
Complexity Class: a set of languages.

def: \(L \subseteq P \) if for any input \(x \in \{0,1\}^* \), \(\exists \) a polynomial time classical algorithm \(A \) s.t. \(A(x) \) accepts iff \(x \in L \).

If input \(x \) has length \(n \), the time \(< c_0 n^{c_1} \) for constants \(c_0, c_1 \).

\(P \sim \) polynomial time

def: \(L \subseteq NP \) if for any input \(x \in \{0,1\}^* \), \(\exists \) a polynomial time classical algorithm \(A \) s.t.

- If \(x \in L \) \(\exists \) a string \(y \) s.t. \(A(x,y) \) accepts
- If \(x \not\in L \) for all strings \(y \), \(A(x,y) \) rejects

"witness" \(NP \sim \) non-deterministic polynomial time

Quantum version of \(P \):

def: \(L \subseteq BQP \) if for any input \(x \in \{0,1\}^* \), \(\exists \) a polynomial time quantum algorithm \(A \):

- If \(x \in L \), \(A(|x\rangle) \) accepts w/prob \(> \frac{2}{3} \)
- If \(x \not\in L \), \(A(|x\rangle) \) accepts w/prob \(< \frac{1}{3} \)

\(BQP \sim \) bounded error quantum polynomial time

Questions

What is the quantum version of \(NP \)?

\(|x\rangle \) is computational basis state. Circuit: \(|x\rangle \rightarrow U_A |y\rangle \rightarrow D \)
def Let QMA if for any $x \in \{0,1\}^*$ there exists a polynomial-time quantum algorithm A such that:

- If $x \in L$, there exists a state $|\psi\rangle$ such that $A(|x\rangle, |\psi\rangle)$ accepts with probability $\geq \frac{2}{3}$.
- If $x \notin L$, A accepts $|\psi\rangle$ with probability $< \frac{1}{3}$.

$QMA \approx$ quantum Merlin Arthur (Merlin sends $|\psi\rangle$ to Arthur, who has a quantum computer)

<table>
<thead>
<tr>
<th>Class</th>
<th>Input State</th>
<th>Success Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMA</td>
<td>$</td>
<td>\psi\rangle$</td>
</tr>
<tr>
<td>QCMA</td>
<td>$</td>
<td>\psi\rangle$ (standard basis state)</td>
</tr>
<tr>
<td>QMA_L</td>
<td>$</td>
<td>\psi\rangle$</td>
</tr>
<tr>
<td>$QMA(2)$</td>
<td>$</td>
<td>\psi_1\rangle</td>
</tr>
<tr>
<td>QCMA$_L$</td>
<td>$</td>
<td>\psi\rangle$ (standard basis state)</td>
</tr>
</tbody>
</table>
Complete Problems:

Def: A language L is complete for a complexity class C if $L \in C$ and also L is C-hard.

Def: L is C-hard if for every $L' \in C$, \exists a polynomial time algorithm to convert input $x' \rightarrow$ string x s.t. $x \in L$ iff $x' \in L'$.

Why are complete problems important? Allow us to relate a specific problem to a specific resource.

Ex: Let $x \in \{0,1\}^*$ describe a classical circuit χ_x.
Let $x \in L_x$ if $\chi_x(0...0)$ accepts.

A_x is P-complete

$A_x \in P$ \implies $L_x \in P$ \implies L_x is P-hard b/c any other language in P has a poly time circuit to decide it, so encode that circuit as A_x with pre-circuit to encode input x.

(If familiar with complexity, try to think of a complete problem for BQP)
Thm: k-local Hamiltonian problem is QMA-Complete [Kitaev]

A Hamiltonian \(H \) has form \(\sum \lambda_i |\psi_i \rangle \langle \psi_i| \).

\(\lambda_i \) real orthonormal basis \(|\psi_i \rangle \) s.t. \(\lambda_i \leq \lambda_j \ \forall \ j \) is called "groundstate".

def: [k-local Hamiltonian problem] Let a Hamiltonian \(H = \sum H_j \)

act on \(n \) qubits, where \(H_j \) are Hamiltonians acting non-trivially

on at most \(k \) qubits. Let \(\lambda \) be the smallest eigenvalue of \(H \), and let \(a, b \in \mathbb{R} : a < b, b - a \geq \frac{1}{\text{poly}(n)} \).

Then the problem is to determine if \(\lambda \leq a \) ("accept")
or \(\lambda > b \), promised one is the case.