CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
Languages and Machines
A Few Questions About REs

- How are REs implemented?
 - Implementing a one-off RE is not so hard
 - How to do it in general?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., \(e^+ \) is the same as \(ee^* \)

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- … next comes the math!
Definition: Alphabet

- An **alphabet** is a finite set of symbols
 - Usually denoted Σ

- **Example alphabets**:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9,a-z,A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \} \neq \varepsilon$

- Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):
 - 0101
 - 0101110
 - ε
Definition: String concatenation

- String concatenation is indicated by juxtaposition:
 - $s_1 = \text{super}$
 - $s_2 = \text{hero}$
 - $s_1s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$

- For any string s, we have $s\epsilon = \epsilon s = s$
 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If $s_1 = \text{super}$ from $\Sigma_1 = \{s,u,p,e,r\}$ and $s_2 = \text{hero}$ from $\Sigma_2 = \{h,e,r,o\}$, then $s_1s_2 = \text{superhero}$ from $\Sigma_3 = \{e,h,o,p,r,s,u\}$
Definition: Language

- A **language** L is a set of strings over an alphabet.

- Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{a, aa, ab, ac\}$

- Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{\varepsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots\}$
 - Language of all strings written Σ^*

- Example: All strings of length 0 over alphabet Σ
 - $L = \{s \mid s \in \Sigma^* \text{ and } |s| = 0\}$
 - “the set of strings s such that s is from Σ^* and has length 0”
 - $= \{\varepsilon\} \neq \emptyset$
Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
- Give an example element of this language (123) 456–7890
- Are all strings over the alphabet in the language? No
- Is there a Ruby regular expression for this language?
  ```ruby
  /
  \((\d{3,3})\) \d{3,3}-\d{4,4}/
  ```

- Example: The set of all valid Ruby programs
 - Later we’ll see how we can specify this language
 - (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** L_1L_2 is defined as
 - $L_1L_2 = \{ xy | x \in L_1 \text{ and } y \in L_2 \}$

- **Union** is defined as
 - $L_1 \cup L_2 = \{ x | x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** is defined as
 - $L^* = \{ x | x = \epsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Quiz 1: Which string is not in L_3

$L_1 = \{a, \ ab, c, \ d, \ \varepsilon\}$ where $\Sigma = \{a, b, c, d\}$
$L_2 = \{d\}$
$L_3 = L_1L_2$

A. a
B. abd
C. cd
D. d
Quiz 1: Which string is not in L_3 \\

$L_1 = \{a, \text{ab}, c, d, \varepsilon\}$ \quad \text{where} \quad \Sigma = \{a, b, c, d\}$
$L_2 = \{d\}$
$L_3 = L_1L_2$

A. a
B. abd
C. cd
D. d
Quiz 2: Which string is not in \(L_3 \)

\[L_1 = \{a, \text{ab}, c, d, \varepsilon\} \quad \text{where} \quad \Sigma = \{a,b,c,d\} \]

\[L_2 = \{d\} \]

\[L_3 = L_1 \cup L_2 \]

A. a
B. abd
C. \(\varepsilon \)
D. d
Quiz 2: Which string is **not** in L_3

$L_1 = \{ a, \ ab, \ c, \ d, \ \varepsilon \}$ \quad where $\Sigma = \{ a, b, c, d \}$

$L_2 = \{ d \}$

$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Regular Expressions: Grammar

- Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R

$$R ::= \emptyset \quad \text{The empty language}$$

$$| \epsilon \quad \text{The empty string}$$

$$| \sigma \quad \text{A symbol from alphabet } \Sigma$$

$$| R_1 R_2 \quad \text{The concatenation of two regexps}$$

$$| R_1 | R_2 \quad \text{The union of two regexps}$$

$$| R^* \quad \text{The Kleene closure of a regexp}$$
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - *aka* regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0 \}$ ($a^n = \text{sequence of } n \text{ } a's$)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each symbol $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Constants
Semantics: Regular Expressions (2)

- Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

Operations

- There are no other regular expressions over Σ
Regexps apply operations to symbols

- Generates a set of strings (i.e., a language)

 (Formal definition shortly)

- Examples

 - $a \rightarrow \{a\}$
 - $a|b \rightarrow \{a\} \cup \{b\} = \{a, b\}$
 - $a^* \rightarrow \{\epsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\epsilon, a, aa, \ldots\}$

- If $s \in$ language generated by a RE r, we say that r accepts, describes, or recognizes string s
Precedence

Order in which operators are applied is:

- Kleene closure \(*\) > concatenation > union |
- \(ab|c = (a b) | c\) \(\rightarrow \{ab, c\}\)
- \(ab^* = a (b^*)\) \(\rightarrow \{a, ab, abb \ldots\}\)
- \(a|b^* = a | (b^*)\) \(\rightarrow \{a, \varepsilon, b, bb, bbb \ldots\}\)

We use parentheses \((\)\) to clarify

- E.g., \(a(b|c), (ab)^*, (a|b)^*\)
- Using escaped \(\backslash(\) if parens are in the alphabet
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition

- `/Ruby/` – concatenation of single-symbol REs
- `/Ruby|Regular)/` – union
- `/Ruby)*/` – Kleene closure
- `/Ruby)+/` – same as `(Ruby)(Ruby)*`
- `/Ruby)?/` – same as `(ε|(Ruby))` (// is ε)
- `/[a-z]/` – same as `(a|b|c|...|z)`
- `/[^0-9]/` – same as `(a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
- `^, $` – correspond to extra symbols in alphabet
Implementing Regular Expressions

- We can implement a regular expression by turning it into a **finite automaton**
 - A “machine” for recognizing a regular language

```
“String”
“String” “String”
“String” “String”
“String”
```

Yes

No
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

Accepted?
Finite Automaton: Example 1

0 0 1 0 1 1

Accepted?
Yes
Finite Automaton: Example 2

0 0 1 0 1 0

Accepted?
Finite Automaton: Example 2

Accepted?
No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

S0 -> S1 with transitions:
- a -> b
- b -> c
- c -> a

S2 -> S3 with transitions:
- a -> b
- b -> c
- c -> a

S1 -> S3 with transitions:
- a, b, c

S3 -> (three self loops indicated by a,b,c notation)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>S0</td>
<td>Y</td>
</tr>
</tbody>
</table>

(S0, S1, S2, S3)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acba</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)

A. abbbbc
B. ccc
C. ε
D. bcca
Quiz 4: Which string is **not** accepted?

A. abbbc
B. ccc
C. ε
D. bcca

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

What language does this FA accept?

\[a^*b^*c^* \]

S3 is a dead state – a nonfinal state with no transition to another state
Finite Automaton: Example 4

Language?
\texttt{a*b*c*} again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 5

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Finite Automaton: Example 5

- **Language as a regular expression?**
 - \((a|b)^*abb\)
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Zero or more a’s, followed by a single b, followed by zero or more a’s.
C. Any string in $\{a,b\}$.
D. A string that starts with b followed by a’s.
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Zero or more a’s, followed by a single b, followed by zero or more a’s.
C. Any string in $\{a,b\}$.
D. A string that starts with b followed by a’s.
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s

4 states:

0s 1s

- e e e
- o e e
- e o o
- o o o
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s

Flip each state