CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA

\[\varepsilon \text{-transition} \]
DFA for \((a|b)^*abb\)
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states \(S0, S1\)

- **ababa**
 - Has paths to \(S0, S1\)
 - Need to use \(\varepsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\(ba^+ (a | b) \)

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[ba^+ (a | b) \]

A.

B.

C.

D. None of the above
How NFA Acceptance Works

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label
 - ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions

 What's this definition saying that \(\delta\) is?

- A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S_0, S_1\}$
- $q_0 = S_0$
- $F = \{S_1\}$
- δ

<table>
<thead>
<tr>
<th>symbol</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>S_0</td>
<td>S_1</td>
</tr>
<tr>
<td>S_1</td>
<td>S_0</td>
<td>S_1</td>
</tr>
</tbody>
</table>

or as \{ (S_0,0,S_0),(S_0,1,S_1),(S_1,0,S_0),(S_1,1,S_1) \}
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma, Q, q_0, F\) as with DFAs
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

- An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA's start state to a final state

CMSC 330 Summer 2017
Reducing Regular Expressions to NFAs

- **Goal:** Given regular expression A, construct NFA: $\langle A \rangle = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - **Invariant:** $|F| = 1$ in our NFAs
 - Recall F = set of final states

- Will define $\langle A \rangle$ for base cases: σ, ε, \emptyset
 - Where σ is a symbol in Σ

- And for inductive cases: AB, $A|B$, A^*
Reducing Regular Expressions to NFAs

- Base case: σ

$$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$$
Reduction

- **Base case: ε**

 \[<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset) \]

- **Base case: \emptyset**

 \[<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset) \]
Reduction: Concatenation

- **Induction:** AB

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Concatenation

- Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})$
Reduction: Union

Induction: $A | B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: \(A \mid B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
- \(<A \mid B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\}) \)
Reduction: Closure

- Induction: \(A^* \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
Reduction: Closure

Induction: \(A^* \)

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
\langle A^* \rangle &= (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\}, \\
&\quad \delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\})
\end{align*}
\]
RE-> NFA

Draw NFAs for the regular expression (0|1)*110*
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a | b^*$?
Quiz 3: Which NFA matches $a|b^*$?
RE-> NFA

Draw NFAs for the regular expression \((ab^*c|d*a|ab)d\)
Reduction Complexity

- Given a regular expression A of size n...

 \[
 \text{Size} = \text{# of symbols} + \text{# of operations}
 \]

- How many states does $<A>$ have?

 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Recap

- **Finite automata**
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- **Types**
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- **Reducing RE to NFA**
 - Concatenation
 - Union
 - Closure
Reducing NFA to DFA

can transform

DFA ←transform NFA

can transform

RE

can transform
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

Algorithm

- Input
 - NFA \((\Sigma, Q, q_0, F_n, \delta)\)
- Output
 - DFA \((\Sigma, R, r_0, F_d, \delta)\)
- Using two subroutines
 - \(\varepsilon\)-closure(p)
 - move(p, a)
We say $p \xrightarrow{\varepsilon} q$

- If it is possible to go from state p to state q by taking only ε-transitions
- If $\exists p, p_1, p_2, \ldots p_n, q \in Q$ such that
 - $\{p,\varepsilon,p_1\} \in \delta$, $\{p_1,\varepsilon,p_2\} \in \delta$, \ldots, $\{p_n,\varepsilon,q\} \in \delta$

ε-closure(p)

- Set of states reachable from p using ε-transitions alone
 - Set of states q such that $p \xrightarrow{\varepsilon} q$
 - ε-closure(p) = $\{q \mid p \xrightarrow{\varepsilon} q\}$

- Note
 - ε-closure(p) always includes p
 - ε-closure() may be applied to set of states (take union)
\(\varepsilon \)-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)
 - \(S_2 \xrightarrow{\varepsilon} S_3 \)
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)

 \(\varepsilon \)-closure:
 - \(\varepsilon \)-closure(\(S_1 \)) = \{ \}
 - \(\varepsilon \)-closure(\(S_2 \)) = \{ \}
 - \(\varepsilon \)-closure(\(S_3 \)) = \{ \}
 - \(\varepsilon \)-closure(\{ \(S_1, S_2 \) \}) = \{ \} \cup \{ \} \)
ε-closure: Example 1

- Following NFA contains
 - S1 $\varepsilon \rightarrow$ S2
 - S2 $\varepsilon \rightarrow$ S3
 - S1 $\varepsilon \rightarrow$ S3

 ➢ Since S1 $\varepsilon \rightarrow$ S2 and S2 $\varepsilon \rightarrow$ S3

- ε-closures
 - ε-closure(S1) = { S1, S2, S3 }
 - ε-closure(S2) = { S2, S3 }
 - ε-closure(S3) = { S3 }
 - ε-closure({ S1, S2 }) = { S1, S2, S3 } ∪ { S2, S3 }
ε-closure: Example 2

Following NFA contains

- \(S_1 \xrightarrow{\varepsilon} S_3 \)
- \(S_3 \xrightarrow{\varepsilon} S_2 \)
- \(S_1 \xrightarrow{\varepsilon} S_2 \)

Since \(S_1 \xrightarrow{\varepsilon} S_3 \) and \(S_3 \xrightarrow{\varepsilon} S_2 \)

ε-closures

- \(\varepsilon\text{-closure}(S_1) = \{ \} \)
- \(\varepsilon\text{-closure}(S_2) = \{ \} \)
- \(\varepsilon\text{-closure}(S_3) = \{ \} \)
- \(\varepsilon\text{-closure}(\{S_2,S_3\}) = \{ \} \cup \{ \} \)
ε-closure: Example 2

- Following NFA contains
 - S1 \(\varepsilon\to S3\)
 - S3 \(\varepsilon\to S2\)
 - S1 \(\varepsilon\to S2\)

 ➢ Since S1 \(\varepsilon\to S3\) and S3 \(\varepsilon\to S2\)

- ε-closures
 - \(\varepsilon\)-closure(S1) = \{ S1, S2, S3 \}
 - \(\varepsilon\)-closure(S2) = \{ S2 \}
 - \(\varepsilon\)-closure(S3) = \{ S2, S3 \}
 - \(\varepsilon\)-closure(\{ S2, S3 \}) = \{ S2 \} \cup \{ S2, S3 \}
Calculating $\text{move}(p,a)$

- $\text{move}(p,a)$
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that $\{p, a, q\} \in \delta$
 - $\text{move}(p,a) = \{q | \{p, a, q\} \in \delta\}$

- Note: $\text{move}(p,a)$ may be empty \emptyset
 - If no transition from p with label a
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(S1, a) = \{ \}$
 - $\text{move}(S1, b) =$
 - $\text{move}(S2, a) =$
 - $\text{move}(S2, b) = \{ \}$
 - $\text{move}(S3, a) =$
 - $\text{move}(S3, b) =$
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(S1, a) = \{ S2, S3 \}$
 - $\text{move}(S1, b) = \emptyset$
 - $\text{move}(S2, a) = \emptyset$
 - $\text{move}(S2, b) = \{ S3 \}$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(S1, a) = \{ \}$
 - $\text{move}(S1, b) = \{ \}$
 - $\text{move}(S2, a) = \{ \}$
 - $\text{move}(S2, b) = \{ \}$
 - $\text{move}(S3, a) =$
 - $\text{move}(S3, b) =$
move(a,p) : Example 2

Following NFA

- $\Sigma = \{ a, b \}$

Move

- $\text{move}(S1, a) = \{ S2 \}$
- $\text{move}(S1, b) = \{ S3 \}$
- $\text{move}(S2, a) = \{ S3 \}$
- $\text{move}(S2, b) = \emptyset$
- $\text{move}(S3, a) = \emptyset$
- $\text{move}(S3, b) = \emptyset$
NFA \rightarrow DFA Reduction Algorithm ("subset")

- **Input** NFA $(\Sigma, Q, q_0, F_n, \delta)$, **Output** DFA $(\Sigma, R, r_0, F_d, \delta)$
- **Algorithm**

 Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state

 While \exists an unmarked state $r \in R$ // process DFA state r

 Mark r // each state visited once

 For each $a \in \Sigma$ // for each letter a

 Let $S = \{s \mid q \in r \& \text{move}(q, a) = s\}$ // states reached via a

 Let $e = \varepsilon$-closure(S) // states reached via ε

 If $e \not\in R$ // if state e is new

 Let $R = R \cup \{e\}$ // add e to R (unmarked)

 Let $\delta = \delta \cup \{r, a, e\}$ // add transition $r \rightarrow e$

 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$ // final if include state in F_n
NFA \rightarrow DFA Example
NFA \rightarrow DFA Example
NFA → DFA Example 1

- Start = ε-closure(S_1) = { {S1,S3} }
- $R = \{ \{S1, S3\} \}$
- $r \in R = \{S1, S3\}$
- Move({S1,S3},a) = {S2}
 - $e = \varepsilon$-closure({S2}) = {S2}
 - $R = R \cup \{S2\} = \{ \{S1, S3\}, \{S2\} \}$
 - $\delta = \delta \cup \{\{S1, S3\}, a, \{S2\}\}$
- Move({S1,S3},b) = \emptyset
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1,S3\}, \{S2\} \} \)
- \(r \in R = \{S2\} \)
- \(\text{Move}(\{S2\},a) = \emptyset \)
- \(\text{Move}(\{S2\},b) = \{S3\} \)
 - \(e = \varepsilon\text{-closure}(\{S3\}) = \{S3\} \)
 - \(R = R \cup \{\{S3\}\} = \{\{S1,S3\}, \{S2\}, \{S3\}\} \)
 - \(\delta = \delta \cup \{\{S2\}, b, \{S3\}\} \)
NFA → DFA Example 1 (cont.)

- $R = \{ \{S_1, S_3\}, \{S_2\}, \{S_3\} \}$
- $r \in R = \{S_3\}$
- $\text{Move}(\{S_3\}, a) = \emptyset$
- $\text{Move}(\{S_3\}, b) = \emptyset$
- Mark $\{S_3\}$, exit loop
- $F_d = \{\{S_1, S_3\}, \{S_3\}\}$
 - Since $S_3 \in F_n$
- Done!
NFA \rightarrow DFA Example 2

- NFA
- DFA
NFA → DFA Example 2

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equiv to this NFA?

A.

B.

C.

D. None of the above
Actual Answer

NFA:
NFA \rightarrow DFA Example 3

NFA

DFA

$R = \{ \{A,E\}, \{B,D,E\}, \{C,D\}, \{E\} \}$
NFA → DFA Practice
NFA → DFA Practice
Analyzing the reduction

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)
Reducing DFA to RE

DFA \rightarrow \text{can transform} \rightarrow \text{NFA} \rightarrow \text{RE}

DFA \text{ can transform} \rightarrow \text{RE}

NFA \text{ can transform} \rightarrow \text{RE}
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

$(0 + 1(01^*01)^*)^*$
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

Intuition
- Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

Algorithm
- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \(a\) lead to identical partition \(P_2\)
 - Even though transitions on \(a\) lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

DFA

Initial partitions

- Accept \{ R \} = P1
- Reject \{ S, T \} = P2

Split partition? → Not required, minimization done

- move(S,a) = T ∈ P2 → move(S,b) = R ∈ P1
- move(T,a) = T ∈ P2 → move(T,b) = R ∈ P1
Minimizing DFA: Example 2

\[S \rightarrow a \rightarrow T \rightarrow a \rightarrow T \rightarrow b \rightarrow R \]
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition? → Yes, different partitions for B**
 - move(S,a) = T ∈ P2
 - move(S,b) = T ∈ P2
 - move(T,a) = T ∈ P2
 - move(T,b) = R ∈ P1

DFA already minimal
Minimizing DFA: Example 3
Minimizing DFA: Example 3
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- **Note this only works with DFAs**
 - Why not with NFAs?
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {
 symbol = getchar();
 switch (cur_state) {
 case 0: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 }
 break;
 case 1: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 }
 break;
 default: printf("unknown state; I'm confused\n");
 }
 break;
}

Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:
let \(q = q_0\)
while (there exists another symbol \(s\) of the input string)
 \(q := \delta(q, s)\);
if \(q \in F\) then
 accept
else reject

• \(q\) is just an integer
• Represent \(\delta\) using arrays or hash tables
• Represent \(F\) as a set
Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice

- So there’s the initial overhead
 - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of \((\Sigma, Q_A, q_A, \{f_A\}, \delta_A)\), the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - \(\varepsilon \)-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation