CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

• **Scanner / lexer / tokenizer** converts program source into tokens (keywords, variable names, operators, numbers, etc.) with regular expressions
• **Parser** converts tokens into an **AST** (abstract syntax tree) using context free grammars
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.

- Tokens determined with regular expressions
 - Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*

- Simplest case: a token is just a string
 - type token = string
 - But representation might be more full featured

- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

type token = string

let tokenize (s:string) = ...
 (* returns token list *)
;;

tokenize "this is a string" = ["this"; "is"; "a"; "string"]
More Interesting Scanner

type token =
 Tok_Num of char
| Tok_Sum
| Tok_END

let tokenize (s:string) = ...
 (* returns token list *)

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+
let tokenize str =
 let rec tok pos s =
 if pos >= String.length s then
 [Tok_END]
 else
 if (Str.string_match re_num s pos) then
 let token = Str.matched_string s in
 (Tok_Num token.[0])::(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum::(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
 in
 tok 0 str

(tokenize "1+2") =
 [Tok_Num '1';
 Tok_Sum;
 Tok_Num '2';
 Tok_END]

Uses Str library module for regexps
Implementing Parsers

- Many efficient techniques for parsing
 - I.e., for turning strings into parse trees
 - Examples
 - LL(k), SLR(k), LR(k), LALR(k)...
 - Take CMSC 430 for more details

- One simple technique: **recursive descent parsing**
 - This is a *top-down* parsing algorithm
 - Other algorithms are *bottom-up*
Top-Down Parsing

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for

{ x = 3 ; { y = 4 ; } ; } ;

{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different.
Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)
- Example grammar
 - \(S \rightarrow aA, A \rightarrow Bc, B \rightarrow b \)
- Example parse
 - \(abc \Rightarrow aBc \Rightarrow aA \Rightarrow S \)
 - Derivation happens in reverse
- Something to look forward to in CMSC 430
 - Complicated to use; requires tool support
 - \textbf{Bison}, \textbf{yacc} produce shift-reduce parsers from CFGs
Tradeoffs

- **Recursive descent parsers**
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table

- **Shift-reduce parsers** handle more grammars
 - Error messages may be confusing

- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

- **Goal**
 - Determine if we can produce the string to be parsed from the grammar's start symbol

- **Approach**
 - Recursively replace nonterminal with RHS of production

- At each step, we'll keep track of two facts
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

• If we’re trying to match a terminal
 ➢ If the lookahead is that token, then succeed, advance the lookahead, and continue

• If we’re trying to match a nonterminal
 ➢ Pick which production to apply based on the lookahead

• Otherwise fail with a parsing error
Parsing Example

\[E \rightarrow \text{id} = n \mid \{ \text{L} \} \]
\[\text{L} \rightarrow E \, \text{;} \, \text{L} \mid \varepsilon \]

- Here \(n \) is an integer and \(\text{id} \) is an identifier

- One input might be
 - \{ \text{x} = 3; \{ \text{y} = 4; \}; \}
 - This would get turned into a list of tokens
 \{ \text{x} = 3; \{ \text{y} = 4; \} ; \}
 - And we want to turn it into a parse tree
Parsing Example (cont.)

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \epsilon \]

\{ x = 3 ; \{ y = 4 ; \} ; \}

lookahead
Recursive Descent Parsing (cont.)

- **Key step**
 - Choosing which production should be selected

- **Two approaches**
 - Backtracking
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

- Motivating example
 - The lookahead is x
 - Given grammar $S \rightarrow xyz \mid abc$
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
 - Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - Select $S \rightarrow A$, since A can derive string beginning with x

- In general
 - Choose a production that can derive a sentential form beginning with the lookahead
 - Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

- \(\text{First}(\gamma) \), for any terminal or nonterminal \(\gamma \), is the set of initial terminals of all strings that \(\gamma \) may expand to
- We’ll use this to decide what production to apply

Examples

- Given grammar \(S \rightarrow xyz \mid abc \)
 - First(xyz) = \{ x \}, First(abc) = \{ a \}
 - First(S) = First(xyz) \cup First(abc) = \{ x, a \}

- Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 - First(x) = \{ x \}, First(y) = \{ y \}, First(A) = \{ x, y \}
 - First(z) = \{ z \}, First(B) = \{ z \}
 - First(S) = \{ x, y, z \}
Calculating First(γ)

- For a terminal a
 - $\text{First}(a) = \{a\}$

- For a nonterminal N
 - If $N \rightarrow \varepsilon$, then add ε to First(N)
 - If $N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n$, then (note the α_i are all the symbols on the right side of one single production):
 - Add First($\alpha_1\alpha_2 \ldots \alpha_n$) to First($N$), where First($\alpha_1 \alpha_2 \ldots \alpha_n$) is defined as
 - First(α_1) if $\varepsilon \not\in \text{First}(\alpha_1)$
 - Otherwise (First(α_1) – ε) \cup First($\alpha_2 \ldots \alpha_n$)
 - If $\varepsilon \in \text{First}(\alpha_i)$ for all i, $1 \leq i \leq k$, then add ε to First(N)
First() Examples

\[E \rightarrow id = n | \{ L \} \]
\[L \rightarrow E ; L | \epsilon \]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("{")= \{ "{" \}
First("}")= \{ "}" \}
First(";")= \{ ";" \}
First(E) = \{ id, "{" \}
First(L) = \{ id, "{" , \epsilon \}

\[E \rightarrow id = n | \{ L \} | \epsilon \]
\[L \rightarrow E ; L \]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("{")= \{ "{" \}
First("}")= \{ "}" \}
First(";")= \{ ";" \}
First(E) = \{ id, "{" , \epsilon \}
First(L) = \{ id, "{" , ";" \}
Quiz #1

Given the following grammar:

\[S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \epsilon \]

What is \textbf{First}(S)\

\begin{itemize}
 \item A. \{a\}
 \item B. \{b, c\}
 \item C. \{b\}
 \item D. \{c\}
\end{itemize}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

```
S -> aAB
A -> CBC
B -> b
C -> cC | ε
```

What is First(B)?
A. {a}
B. {b, c}
C. {b}
D. {c}
Quiz #2

Given the following grammar:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>aAB</td>
</tr>
<tr>
<td>A</td>
<td>CBC</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>cC</td>
</tr>
</tbody>
</table>

What is $\text{First}(B)$?

A. $\{a\}$
B. $\{b, c\}$
C. $\{b\}$
D. $\{c\}$
Quiz #3

Given the following grammar:

\[
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \epsilon
\]

What is First(A)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #3

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is First(A)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

- The body of `parse_N` for a nonterminal `N` does the following
 - Let `N → β_1 | ... | β_k` be the productions of `N`
 - Here `β_i` is the entire right side of a production - a sequence of terminals and nonterminals
 - Pick the production `N → β_i` such that the lookahead is in `First(β_i)`
 - It must be that `First(β_i) ∩ First(β_j) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
 - Suppose `β_i = α_1 α_2 ... α_n`. Then call `parse_α_1(); ... ; parse_α_n()` to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - First(xyz) = \{ x \}, First(abc) = \{ a \}

- Parser

```ocaml
let parse_S () =
  if lookahead () = "x" then (* $S \rightarrow xyz$ *)
    (match_tok "x";
     match_tok "y";
     match_tok "z")
  else if lookahead () = "a" then (* $S \rightarrow abc$ *)
    (match_tok "a";
     match_tok "b";
     match_tok "c")
  else raise (ParseError "parse_S")
```
Another Example Parser

- Given grammar $S \rightarrow A \mid B$ $A \rightarrow x \mid y$ $B \rightarrow z$
 - $\text{First}(A) = \{x, y\}$, $\text{First}(B) = \{z\}$

Parser: let rec parse_S () =
 if lookahead () = "x" ||
 lookahead () = "y" then
 parse_A () (* $S \rightarrow A$ *)
 else if lookahead () = "z" then
 parse_B () (* $S \rightarrow B$ *)
 else raise (ParseError "parse_S")

and parse_A () =
 if lookahead () = "x" then
 match_tok "x" (* $A \rightarrow x$ *)
 else if lookahead () = "y" then
 match_tok "y" (* $A \rightarrow y$ *)
 else raise (ParseError "parse_A")

and parse_B () = ...
Example

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(E) = \{ id, "{" \}

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* E → id = n *)
 (match_tok "id";
 match_tok ";";
 match_tok "n")
 else if lookahead () = "{" then
 (* E → \{ L \} *)
 (match_tok "{";
 parse_L ();
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* L → E ; L *)
 (parse_E ();
 match_tok ";";
 parse_L ())
 else
 (* L → \varepsilon *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree

Examples

- Grammar
 S → xyz
 S → abc

- String “xyz”
  ```
  parse_S ()
  match_tok “x” / | \ 
  match_tok “y” x y z
  match_tok “z”
  ```

- Grammar
 S → A | B
 A → x | y
 B → z

- String “x”
  ```
  parse_S ()
  parse_A ()
  match_tok “x”
  ```
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ε
 - Possible infinite recursion

- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar \(E \rightarrow ab \mid ac \)
- \(\text{First}(ab) = a \)
- \(\text{First}(ac) = a \)

Parser fails whenever \(A \rightarrow \alpha_1 \mid \alpha_2 \) and
- \(\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon \) or \(\emptyset \)

Solution
- Rewrite grammar using left factoring
Left Factoring Algorithm

Given grammar
- $A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta$

Rewrite grammar as
- $A \rightarrow xL \mid \beta$
- $L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$

Repeat as necessary

Examples
- $S \rightarrow ab \mid ac \quad \Rightarrow S \rightarrow aL \quad L \rightarrow b \mid c$
- $S \rightarrow abcA \mid abB \mid a \quad \Rightarrow S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \varepsilon$
- $L \rightarrow bcA \mid bB \mid \varepsilon \quad \Rightarrow L \rightarrow bL' \mid \varepsilon \quad L' \rightarrow cA \mid B$
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to choose between productions

- Example
 - Consider parsing the grammar \(E \rightarrow a+b | a*b | a \)

```ocaml
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* E \rightarrow a+b *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "*" then (* E \rightarrow a*b *)
    (match_tok "*";
     match_tok "b")
  else () (* E \rightarrow a *)
```
Left Recursion

Consider grammar \(S \rightarrow Sa \mid \varepsilon \)

• Try writing parser

```ml
let rec parse_S () =
  if lookahead () = "a" then
    (parse_S ();
     match_tok "a") (* S → Sa *)
  else ()
```

• Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar $S \rightarrow aS \mid \varepsilon$

- Try writing parser

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S () (* S → aS *)
   else ()
```

- Will `parse_S()` infinite loop?
 - Invoking `match_tok` will advance lookahead, eventually stop

- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- Given grammar
 - \(A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta \)
 - \(\beta \) must exist or derivation will not yield string

- Rewrite grammar as (repeat as needed)
 - \(A \rightarrow \beta L \)
 - \(L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \varepsilon \)

- Replaces left recursion with right recursion

- Examples
 - \(S \rightarrow Sa \mid \varepsilon \) \(\Rightarrow S \rightarrow L \quad L \rightarrow aL \mid \varepsilon \)
 - \(S \rightarrow Sa \mid Sb \mid c \) \(\Rightarrow S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \varepsilon \)
What Does the following code parse?

```haskell
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
         match_tok "x";
         match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #4

What Does the following code parse?

```haskell
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

- What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
      parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
      match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
     match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S ->aqSp
D. S -> a | q
Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
 (due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.

```plaintext
parse tree
```

```plaintext
AST
```
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
 - Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already
 - $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$

![Diagram of a tree representing the expression $c + (b * d)$]
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`
 - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

  ```python
  let rec parse_S () =
  if lookahead () = "a" then
    let n1 = match_tok "a" in
    let n2 = parse_A () in
    Node(n1,n2)
  else raise ParseError "parse_S"
  ```
The Compilation Process

source program \[\rightarrow\] Compiler \[\rightarrow\] target program

Lexing \[\rightarrow\] Parsing \[\rightarrow\] AST \[\rightarrow\] Intermediate Code Generation \[\rightarrow\] Optimization

regexps DFAs \[\rightarrow\] CFGs PDAs \[\rightarrow\] (may not actually be constructed)