
CMSC 330: Organization of
Programming Languages

OCaml Data Types

1

CMSC330 Fall 2017

CMSC330 Fall 2017

2

OCaml Data

• So far, we’ve seen the following kinds of data
• Basic types (int, float, char, string)
• Lists

Ø One kind of data structure
Ø A list is either [] or h::t, deconstructed with pattern matching

• Tuples and Records
Ø Let you collect data together in fixed-size pieces

• Functions

• How can we build other data structures?
• Building everything from lists and tuples is awkward

3

User Defined Types

• type can be used to create new names for types
• Useful for combinations of lists and tuples

• Examples
• type my_type = int * (int list)
• let (x:my_type) = (3, [1; 2])

• type my_type2 = int*char*(int*float)
• let (y:my_type2) = (3, ‘a’, (5, 3.0))

(User-Defined) Variants
type coin = Heads | Tails

let flip x =
match x with
Heads -> Tails

| Tails -> Heads

let rec count_heads x =
match x with
[] -> 0

| (Heads::x’) -> 1 + count_heads x’
| (_::x’) -> count_heads x’

4

In simplest form:
Like a C enum

Basic pattern
matching
resembles C
switch

Combined list
and variant
patterns possible

Constructing and Destructing Variants

5

• Syntax
• type t = C1 | … | Cn
• the Ci are called constructors

Ø Must begin with a capital letter

• Evaluation
• A constructor Ci is already a value
• Destructing a value v of type t is done by pattern

matching on v ; the patterns are the constructors Ci
• Type Checking

• Ci : t (for each Ci in t’s definition)

6

Data Types: Variants with Data

• We can define variants that “carry data” too
• Not just a constructor, but a constructor plus values

• Rect and Circle are constructors
• where a shape is either a Rect(w,l)

Ø for any floats w and l
• or a Circle r

Ø for any float r

type shape =
Rect of float * float (* width*length *)

| Circle of float (* radius *)

7

Data Types (cont.)

• Use pattern matching to deconstruct values
• Can bind pattern values to data parts

• Data types are aka algebraic data types are aka
tagged unions

let area s =
match s with

Rect (w, l) -> w *. l
| Circle r -> r *. r *. 3.14

;;
area (Rect (3.0, 4.0));; (* 12.0 *)
area (Circle 3.0);; (* 9.42 *)

8

Data Types (cont.)

• What's the type of lst?
• shape list

• What's the type of lst's first element?
• shape

type shape =
Rect of float * float (* width*length *)

| Circle of float (* radius *)

let lst = [Rect (3.0, 4.0) ; Circle 3.0]

Variation: Shapes in Java

9

public interface Shape {
public double area();

}

class Rect implements Shape {
private double width, length;

Rect (double w, double l) {
this.width = w;
this.length = l;

}

double area() {
return width * length;

}
}

class Circle implements Shape {
private double rad;

Circle (double r) {
this.rad = r;

}

double area() {
return rad * rad * 3.14159;

}
}

Compare this to OCaml

10

Option Type

• Comparing to Java: None is like null, while
Some i is like an Integer(i) object

type optional_int =
None

| Some of int

let divide x y =
if y != 0 then Some (x/y)
else None

let string_of_opt o =
match o with
Some i -> string_of_int i

| None -> “nothing”

let p = divide 1 0;;
print_string
(string_of_opt p);;

(* prints “nothing” *)

let q = divide 1 1;;
print_string
(string_of_opt q);;

(* prints “1” *)

11

Polymorphic Option Type
• A Polymorphic version of option type can work

with any kind of data
• As int option, char option, etc...

type ‘a option =
Some of ‘a

| None

let p = opthd [];; (* p = None *)
let q = opthd [1;2];; (* q = Some 1 *)
let r = opthd [“a”];; (* r = Some “a” *)

let opthd l =
match l with
[] -> None

| x::_ -> Some x
In fact, this option type
is built into OCaml

Polymorphic parameter:
like Option<T> in Java

12

Recursive Data Types

• We can build up lists with recursive variant types

• Won’t have nice [1; 2; 3] syntax for this kind of list

type 'a mylist =
Nil

| Cons of 'a * 'a mylist

let rec len = function
Nil -> 0

| Cons (_, t) -> 1 + (len t)

len (Cons (10, Cons (20, Cons (30, Nil))))
(* evaluates to 3 *)

Constructing and Destructing Variants

13

• Syntax
• type t = C1 [of t1] | … | Cn [of tn]
• the Ci are called constructors

Ø Must begin with a capital letter; may include associated data
notated with brackets [] to indicate it’s optional

• Evaluation
• A constructor Ci is a value if it has no assoc. data

Ø Ci vi is a value if it does
• Destructing a value of type t is by pattern matching

Ø patterns are constructors Ci with data components, if any

• Type Checking
• Ci [vi] : t [if vi has type ti]

14

The image part with relationship ID rId3 was not found in the file.

Data Type Representations
• Values in a data type are stored

1. Directly as integers
2. As pointers to blocks in the heap

type t =
A of int

| B
| C of int * int
| D

15

Exercise: A Binary Tree Data Type
• Write type bin_tree for binary trees over int

• Trees should be ordered (binary search tree)
• Implement the following

empty : bin_tree
is_empty : bin_tree -> bool
member : int -> bin_tree -> bool
insert : int -> bin_tree -> bin_tree
remove: int -> bin_tree -> bin_tree
equal : bin_tree -> bin_tree -> bool
fold : (int -> 'a -> 'a) -> bin_tree

-> 'a -> 'a

16

Quiz 1

type foo = (int * (string list)) list

A. [(3, “foo”, “bar”)]
B. [(5, [“foo”, “bar”])]
C. [(7, [“foo”; “bar”])]
D. [(9, [(“foo”, “bar”)])]

Which one of the following could match foo?

17

Quiz 1

type foo = (int * (string list)) list

A. [(3, “foo”, “bar”)]
B. [(5, [“foo”, “bar”])]
C. [(7, [“foo”; “bar”])]
D. [(9, [(“foo”, “bar”)])]

Which one of the following could match foo?

18

Quiz 2: What does this evaluate to?
type num = Int of int | Float of float;;
let plus a b =

match a, b with
| Int i, Int j -> Int (i+j)
| Float i, Float j -> Float (i +. j)
| Float i, Int j -> Float (i +. float_of_int j)

;;
plus (Float 3.0) (Int 2);;

A. float = 5.
B. num = Int 5

C. Type Error
D. num = Float 5.

19

Quiz 2: What does this evaluate to?

A. float = 5.
B. num = Int 5

C. Type Error
D. num = Float 5.

type num = Int of int | Float of float;;
let plus a b =

match a, b with
| Int i, Int j -> Int (i+j)
| Float i, Float j -> Float (i +. j)
| Float i, Int j -> Float (i +. float_of_int j)

;;
plus (Float 3.0) (Int 2);;

20

Quiz 3: What does this evaluate to?

A. float = 45.3

B. Error
C. float = 42.0

D. No output

let foo f = match f with
None -> 42.0

| Some n -> n +. 42.0
;;
foo 3.3;;

21

Quiz 3: What does this evaluate to?

A. float = 45.3

B. Error
C. float = 42.0

D. No output

let foo f = match f with
None -> 42.0

| Some n -> n +. 42.0
;;
foo 3.3;; foo (Some 3.3)

22

OCaml Exceptions
exception My_exception of int
let f n =
if n > 0 then
raise (My_exception n)

else
raise (Failure "foo")

let bar n =
try
f n

with My_exception n ->
Printf.printf "Caught %d\n" n

| Failure s ->
Printf.printf "Caught %s\n" s

23

Exceptions (cont.)

• Exceptions are declared with exception
• They may appear in the signature as well

• Exceptions may take arguments
• Just like type constructors
• May also have no arguments

• Catch exceptions with try...with...
• Pattern-matching can be used in with
• If an exception is uncaught

Ø Current function exits immediately
Ø Control transfers up the call chain
Ø Until the exception is caught, or until it reaches the top level

24

OCaml Exceptions (cont.)

• Exceptions may be thrown by I/O statements
• Common way to detect end of file
• Need to decide how to handle exception

• Example
try
(input_char stdin) (* reads 1 char *)

with End_of_file -> 0 (* return 0? *)

try
read_line () (* reads 1 line *)

with End_of_file -> “” (* return “”? *)

25

OCaml Exceptions (cont.)

• failwith:Raise exception Failure with the given string.
• invalid_arg:Raise exception Invalid_argument with the

given string
• Not_found:Raised if the object does not exist

let div x y =
if y = 0 failwith "divide by zero” else x/y;;

let lst =[(1,"alice");(2,"bob");(3,"cat")];;
let lookup key lst =
try

List.assoc key lst
with
Not_found -> "key does not exist"

