Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment

 \[e \Rightarrow v \]

- Says “\(e \) evaluates to \(v \)”
- \(e \): expression in Micro-OCaml
- \(v \): value that results from evaluating \(e \)
Definitional Interpreter

- It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code
 - The language’s expressions e and values v have corresponding OCaml datatype representations exp and value
 - The semantics is represented as a function

 $$\text{eval}: \text{exp} \rightarrow \text{value}$$

- This way of presenting the semantics is referred to as a **definitional interpreter**
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

- \(e, x, n\) are *meta-variables* that stand for categories of syntax
 - \(x\) is any identifier (like \(z, y, \text{foo}\))
 - \(n\) is any numeral (like \(1, 0, 10, -25\))
 - \(e\) is any expression (here defined, recursively!)

- *Concrete syntax* of actual expressions in **black**
 - Such as \(\text{let, +, z, \text{foo, in, …}}\)

- \(::=\) and \(\mid\) are *meta-syntax* used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

Examples

- 1 is a numeral \(n \) which is an expression \(e \)
- \(1+z \) is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
- \(\text{let } z = 1 \text{ in } 1+z \) is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - \(1+z \) is an expression \(e \), and
 - \(\text{let } x = e \text{ in } e \) is an expression \(e \)
Abstract Syntax = Structure

- Here, the grammar for e is describing its abstract syntax tree (AST), i.e., e’s structure

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

corresponds to (in defn interpreter)

```hs

| type id = string
| type num = int
| type exp =
|   | Ident of id
|   | Num of num
|   | Plus of exp * exp
|   | Let of id * exp * exp
```


An expression’s final result is a value. What can values be?

\[v ::= n \]

Just numerals for now

- In terms of an interpreter’s representation:
 \[\text{type value} = \text{int} \]
- In a full language, values \(v \) will also include booleans (true, false), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- These rules will allow us to show things like
 - $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true
 - let $\text{foo}=1+2$ in $\text{foo}+5 \Rightarrow 8$
 - let $f=1+2$ in let $z=1$ in $f+z \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
Rules of Inference

- We can use a more compact notation for the rules we just presented: rules of inference

 - Has the following format:

 \[
 \begin{array}{c}
 H_1 \quad \ldots \quad H_n \\
 \hline \\
 C
 \end{array}
 \]

 - Says: if the conditions $H_1 \ldots H_n$ ("hypotheses") are true, then the condition C ("conclusion") is true.

 - If $n=0$ (no hypotheses) then the conclusion automatically holds; this is called an axiom.

- We will use inference rules to speak about evaluation.
Rules of Inference: Num and Sum

- Suppose \(e \) is a numeral \(n \)
 - Then \(e \) evaluates to itself, i.e., \(n \Rightarrow n \)

- Suppose \(e \) is an addition expression \(e_1 + e_2 \)
 - If \(e_1 \) evaluates to \(n_1 \), i.e., \(e_1 \Rightarrow n_1 \)
 - If \(e_2 \) evaluates to \(n_2 \), i.e., \(e_2 \Rightarrow n_2 \)
 - Then \(e \) evaluates to \(n_3 \), where \(n_3 \) is the sum of \(n_1 \) and \(n_2 \)
 - I.e., \(e_1 + e_2 \Rightarrow n_3 \)
Rules of Inference: Let

- Suppose \(e \) is a let expression \(\text{let } x = e_1 \text{ in } e_2 \)
 - If \(e_1 \) evaluates to \(v \), i.e., \(e_1 \Rightarrow v_1 \)
 - If \(e_2\{v_1/x\} \) evaluates to \(v_2 \), i.e., \(e_2\{v_1/x\} \Rightarrow v_2 \)
 - Then \(e \) evaluates to \(v_2 \), i.e., \(\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \)

\[\begin{array}{c}
e_1 \Rightarrow v_1 \\
e_2\{v_1/x\} \Rightarrow v_2 \\
\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2
\end{array}\]
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 Goal: Show that $\text{let } x = 4 \text{ in } x+3 \Rightarrow 7$
Derivations

<table>
<thead>
<tr>
<th>n ⇒ n</th>
<th>e1 ⇒ n1 e2 ⇒ n2 n3 is n1+n2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e1 + e2 ⇒ n3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e1 ⇒ v1 e2{v1/x} ⇒ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>let x = e1 in e2 ⇒ v2</td>
</tr>
</tbody>
</table>

Goal: show that

let x = 4 in x+3 ⇒ 7

\[
\begin{align*}
4 & \Rightarrow 4 \\
3 & \Rightarrow 3 \\
7 & \text{is} \ 4+3
\end{align*}
\]

\[
\begin{align*}
4 & \Rightarrow 4 \\
4+3 & \Rightarrow 7
\end{align*}
\]

let x = 4 in x+3 ⇒ 7
Quiz 1

What is derivation of the following judgment?

$$2 + (3 + 8) \Rightarrow 13$$

(a)

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is 3+8} \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is 2+11} \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

$$2 + (3 + 8) \Rightarrow 13$$

(a)

\[
2 \Rightarrow 2 \\
3 + 8 \Rightarrow 11
\]

\[
\begin{align*}
2 + (3 + 8) & \Rightarrow 13 \\
\end{align*}
\]

(b)

\[
3 \Rightarrow 3 \\
8 \Rightarrow 8
\]

\[
\begin{align*}
3 + 8 & \Rightarrow 11 \\
2 & \Rightarrow 2
\end{align*}
\]

\[
\begin{align*}
2 + (3 + 8) & \Rightarrow 13 \\
\end{align*}
\]

(c)

\[
8 \Rightarrow 8 \\
3 \Rightarrow 3 \\
11 \text{ is } 3 + 8
\]

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11
\end{align*}
\]

\[
\begin{align*}
13 \text{ is } 2 + 11
\end{align*}
\]

\[
\begin{align*}
2 + (3 + 8) & \Rightarrow 13 \\
\end{align*}
\]
The style of rules lends itself directly to the implementation of an interpreter as a recursive function:

```ocaml
let rec eval (e:exp):value =
  match e with
  | Ident x -> (* no rule *)
    failwith "no value"
  | Num n -> n
  | Plus (e1,e2) ->
    let n1 = eval e1 in
    let n2 = eval e2 in
    let n3 = n1+n2 in
    n3
  | Let (x,e1,e2) ->
    let v1 = eval e1 in
    let e2' = subst v1 x e2 in
    let v2 = eval e2' in
    v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

- `e1 ⇒ n1`
- `e2 ⇒ n2`
- `n3 is n1+n2`

- `e1 + e2 ⇒ n3`

- `e1 ⇒ v1`
- `e2{v1/x} ⇒ v2`

- `let x = e1 in e2 ⇒ v2`
Derivations = Interpreter Call Trees

\[\begin{align*}
4 \Rightarrow 4 & \quad 3 \Rightarrow 3 \quad 7 \text{ is } 4+3 \\
4 \Rightarrow 4 & \quad 4+3 \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\end{align*} \]

Has the same shape as the recursive call tree of the interpreter:

\[\begin{align*}
eval \ \text{Num} \ 4 \Rightarrow 4 & \quad eval \ \text{Num} \ 3 \Rightarrow 3 \quad 7 \text{ is } 4+3 \\
eval \ (\text{subst} \ 4 \ "x") & \Rightarrow 7 \\
eval \ \text{Num} \ 4 \Rightarrow 4 & \quad \text{Plus} \ (\text{Ident}("x"),\text{Num} \ 3) \Rightarrow 7 \\
eval \ \text{Let}("x",\text{Num} \ 4,\text{Plus} \ (\text{Ident}("x"),\text{Num} \ 3)) \Rightarrow 7
\end{align*} \]
Semantics Defines Program Meaning

- \(e \Rightarrow v \) holds if and only if a *proof* can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means \(e \not\Rightarrow v \)
- Proofs can be constructed bottom-up
 - In a goal-directed fashion
- Thus, function \(\text{eval} \ e = \{ v \mid e \Rightarrow v \} \)
 - Determinism of semantics implies at most one element for any \(e \)
- So: Expression \(e \) *means* \(v \)
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

Mathematically, an environment is a partial function from identifiers to values

- If \(A \) is an environment, and \(x \) is an identifier, then \(A(x) \) can either be …
- … a value (intuition: the variable has been declared)
- … or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table

- If \(A \) is

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
</tr>
<tr>
<td>(y)</td>
<td>2</td>
</tr>
</tbody>
</table>

- then \(A(x) \) is 0, \(A(y) \) is 2, and \(A(z) \) is undefined
Notation, Operations on Environments

- • is the empty environment (undefined for all ids)
- \(x:v \) is the environment that maps \(x \) to \(v \) and is undefined for all other ids
- If \(A \) and \(A' \) are environments then \(A, A' \) is the environment defined as follows:

\[
(A, A')(x) = \begin{cases}
 A'(x) & \text{if } A'(x) \text{ defined} \\
 A(x) & \text{if } A'(x) \text{ undefined but } A(x) \text{ defined} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

- So: \(A' \) shadows definitions in \(A \)
- For brevity, can write •, \(A \) as just \(A \)
Semantics with Environments

- The environment semantics changes the judgment \(e \Rightarrow v \) to be \(A; e \Rightarrow v \) where \(A \) is an environment
 - Idea: \(A \) is used to give values to the identifiers in \(e \)
 - \(A \) can be thought of as containing declarations made up to \(e \)

- Previous rules can be modified by
 - Inserting \(A \) everywhere in the judgments
 - Adding a rule to look up variables \(x \) in \(A \)
 - Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

\[A(x) = v \]
\[A; x \Rightarrow v \]

Look up variable \(x \) in environment \(A \)

\[A; e_1 \Rightarrow v_1 \quad A, x: v_1; e_2 \Rightarrow v_2 \]
\[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]

Extend environment \(A \) with mapping from \(x \) to \(v_1 \)

\[A; e_1 \Rightarrow n_1 \quad A; e_2 \Rightarrow n_2 \quad n_3 \text{ is } n_1 + n_2 \]
\[A; e_1 + e_2 \Rightarrow n_3 \]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)

x ⇒ 3 2 ⇒ 2 5 is 3+2

3 ⇒ 3 x+2 ⇒ 5

let x=3 in x+2 ⇒ 5

(b)

x:3; x ⇒ 3 x:3; 2 ⇒ 2 5 is 3+2

•; 3 ⇒ 3 x:3; x+2 ⇒ 5

-- -----------------------------
•; let x=3 in x+2 ⇒ 5

(c)

x:2; x⇒3 x:2; 2⇒2 5 is 3+2

•; let x=3 in x+2 ⇒ 5
Quiz 2

What is a derivation of the following judgment?

\[\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5 \]

(a) \[
\begin{align*}
\text{x } &\Rightarrow 3 \\
\text{2} &\Rightarrow 2 \\
\text{5 is 3+2}
\end{align*}
\]

\[
\begin{array}{c}
3 \Rightarrow 3 \\
x+2 \Rightarrow 5
\end{array}
\]

\[
\text{let } x=3 \text{ in } x+2 \Rightarrow 5
\]

(b) \[
\begin{align*}
\text{x:3; } &\Rightarrow 3 \\
x:3; &\Rightarrow 2 \\
\text{5 is 3+2}
\end{align*}
\]

\[
\begin{array}{c}
\text{•;3 } \Rightarrow 3 \\
x:3; &\Rightarrow 5
\end{array}
\]

\[
\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5
\]

(c) \[
\begin{align*}
\text{x:2; } &\Rightarrow 3 \\
x:2; &\Rightarrow 2 \\
\text{5 is 3+2}
\end{align*}
\]

\[
\begin{array}{c}
\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5
\end{array}
\]
Definitional Interpreter: Environments

type env = (id * value) list

let extend env x v = (x,v)::env

let rec lookup env x =
 match env with
 | [] -> failwith "no var"
 | (y,v)::env' ->
 if x = y then v
 else lookup env' x
let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Num n -> n
 | Plus (e1,e2) ->
 let n1 = eval env e1 in
 let n2 = eval env e2 in
 let n3 = n1+n2 in
 n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env’ = extend env x v1 in
 let v2 = eval env’ e2 in
 v2
Adding Conditionals to Micro-OCaml

\[
e ::= x | v | e + e | \text{let } x = e \text{ in } e \\
 \quad | \text{eq0 } e | \text{if } e \text{ then } e \text{ else } e
\]

\[
v ::= n | \text{true} | \text{false}
\]

- In terms of interpreter definitions:

\[
\begin{align*}
\text{type } \text{exp } & = \\
 & | \text{Val of } \text{value} \\
 & | \ldots \text{ (* as before *)} \\
 & | \text{Eq0 of } \text{exp} \\
 & | \text{If of } \text{exp} \ast \text{exp} \ast \text{exp}
\end{align*}
\]

\[
\begin{align*}
\text{type } \text{value } & = \\
 & | \text{Int of } \text{int} \\
 & | \text{Bool of } \text{bool}
\end{align*}
\]
Rules for Eq0 and Booleans

<table>
<thead>
<tr>
<th>A; true</th>
<th>A; eq0 e</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A; false</th>
<th>A; eq0 e</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

- **Booleans evaluate to themselves**
 - A; false ⇒ false

- **eq0 tests for 0**
 - A; eq0 0 ⇒ true
 - A; eq0 3+4 ⇒ false
Rules for Conditionals

A; e1 ⇒ true A; e2 ⇒ v
A; if e1 then e2 else e3 ⇒ v

A; e1 ⇒ false A; e3 ⇒ v
A; if e1 then e2 else e3 ⇒ v

- Notice that only one branch is evaluated
 - A; if eq0 0 then 3 else 4 ⇒ 3
 - A; if eq0 1 then 3 else 4 ⇒ 4
Quiz 3

What is the derivation of the following judgment?

•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)
•; 3 ⇒ 3 •; 2 ⇒ 2 3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)
3 ⇒ 3 2 ⇒ 2
3-2 is 1

eq0 3-2 ⇒ false 10 ⇒ 10

if eq0 3-2 then 5 else 10 ⇒ 10

(c)
•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1

•; 3-2 ⇒ 1 1 ≠ 0

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10
Quiz 3

What is the derivation of the following judgment?

•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)

•; 3 ⇒ 3 •; 2 ⇒ 2 3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)

3 ⇒ 3 2 ⇒ 2
3-2 is 1

eq0 3-2 ⇒ false 10 ⇒ 10

if eq0 3-2 then 5 else 10 ⇒ 10

(c)

•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1

•; 3-2 ⇒ 1 1 ≠ 0

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10
Updating the Interpreter

```ocaml
let rec eval env e =
    match e with
    | Ident x -> lookup env x
    | Val v -> v
    | Plus (e1,e2) ->
        let Int n1 = eval env e1 in
        let Int n2 = eval env e2 in
        let n3 = n1+n2 in
        Int n3
    | Let (x,e1,e2) ->
        let v1 = eval env e1 in
        let env' = extend env x v1 in
        let v2 = eval env' e2 in v2
    | Eq0 e1 ->
        let Int n = eval env e1 in
        if n=0 then Bool true else Bool false
    | If (e1,e2,e3) ->
        let Bool b = eval env e1 in
        if b then eval env e2
        else eval env e3
```

Basicallly both rules for `eq0` in this one snippet

Both if rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
 - I.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- **Types** $t ::= \text{bool} \mid \text{int}$
- **Judgment** $\vdash e : t$ says e has type t
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type `bool`
 - `⊢ true : bool`
 - `⊢ false : bool`

- Equality checking has type `bool` too
 - Assuming its target expression has type `int`
 - `⊢ e : int`
 - `⊢ eq0 e : bool`

- Conditionals
 - `⊢ e1 : bool ⊢ e2 : t ⊢ e3 : t`
 - `⊢ if e1 then e2 else e3 : t`
Handling Binding

What about the types of variables?

• Taking inspiration from the environment-style operational semantics, what could you do?

Change judgment to be $G \vdash e : t$ which says e has type t under type environment G

• G is a map from variables x to types t
 ➢ Analogous to map A, maps vars to types, not values

What would be the rules for let, and variables?
Type Checking with Binding

- **Variable lookup**
 \[
 G(x) = t \\
 G \vdash x : t
 \]

- **Let binding**
 \[
 G \vdash e_1 : t_1 \quad G,x : t_1 \vdash e_2 : t_2 \\
 G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2
 \]

 analogous to

 \[
 A(x) = v \\
 A ; x \Rightarrow v
 \]

 \[
 A ; e_1 \Rightarrow v_1 \quad A,x : v_1 ; e_2 \Rightarrow v_2 \\
 A ; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2
 \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later