CMSC330 Fall 2016 Midterm #2 2:00pm/3:30pm

Gradescope ID:						
(Gradescope ID is t	he First l	letter of you	ır last nam	e and last 5	digits of you	ır UID)
(If you write your nam	e on the to	est, or your gra	adescope ID	is not correct, y	our test will I	NOT be graded)
Discussion Time:	10am	11am	12pm	1pm	2pm	3pm
TA Name (Circle):	Alex	Austin	Ayman	Brian	Damien	Daniel K.
	Daniel l	P. Greg	g Tan	nmy Tin	n Vitun	g Will K.

Instructions

- 1. Do not start this test until you are told to do so!
- 2. You have 75 minutes to take this midterm.
- 3. This exam has a total of 100 points, so allocate 45 seconds for each point.
- 4. This is a closed book exam. No notes or other aids are allowed.
- 5. Answer short answer questions concisely in one or two sentences.
- 6. For partial credit, show all of your work and clearly indicate your answers.
- 7. Write neatly. Credit cannot be given for illegible answers.

	Problem	Score
1	Finite Automata	<u>/</u> 20
2	Context Free Grammars	<u>/</u> 16
3	Parsing	<u>/</u> 8
4	OCaml	<u>/</u> 20
5	Programming Language Concepts	<u>/</u> 12
6	Operational Semantics	<u>/</u> 10
7	Lambda Calculus	<u>/</u> 14
	Total	/100

1. Finite Automata (20 pts)

Figure 1: NFA

A. (5 pts) Convert the NFA in Figure 1 to a DFA.

B. (5 pts) Write a regular expression that accepts the same language as the NFA shown in Figure 1.

C. (5 pts) Construct a DFA or NFA that accepts the set of strings over {a, b} that contain exactly two b's.

D. (5 pts) Reduce the following DFA to Regular Expression. (Hint: delete states 2, 1, and 0 in that order.)

2. Context Free Grammars (16 pts)

A. (3 pts) The following context-free grammar generates all strings of the form a^xb^y for some x and y:

$$S \rightarrow aT$$

 $T \rightarrow aTbb \mid \epsilon$

Define an equation relating x and y.

- B. (6 pts) Give a context-free grammar for binary number expressions involving &, +, and ~ (and, or, not)
 - 1) Order of precedence (highest to lowest): ~, &, +
 - 2) Associativity for & and + is left, ~ is unary
 - 3) Parenthesis should be supported
 - 4) Binary numbers can start with 0's (1 and 01 are valid)

C. (4 pts) Let G be the context-free grammar

$$S \rightarrow aS \mid Sb \mid SS \mid ab$$

- a) Give a regular expression for the language of G.
- b) Prove that G is ambiguous. Give an unambiguous grammar that generates the same language as G.

D. (3 pts) Give a context-free grammar G that generates the language $L = L_1 \cup L_2$, where $L_1 = \{a^n b^n c^m : n, m > 0\}$ $L_2 = \{a^n b^m c^m : n, m > 0\}$

3. Parsing (8 pts)

A. (3 pts) Consider the following context-free grammar:

$$S \rightarrow (A) \mid a$$

 $A \rightarrow S B$
 $B \rightarrow ; S B \mid \epsilon$

Compute the first sets of each non-terminal

B. (5 pts) Consider the following CFG.

$$S \rightarrow E$$
; $S \mid E$
 $E \rightarrow T \cap E \mid T$
 $T \rightarrow n$
 $O \rightarrow + \mid -$

Draw a parse tree for the string "n+n;n-n"

4. OCaml (20 pts)

```
let rec map f l = match l with
      [] -> []
      | h::t -> let r = f h in r :: map f t
;;
let rec fold f a l = match l with
      [] -> a
      |h::t -> fold f (f a h) t
;;
helper methods are allowed.
```

A. (8 points) Write a function **combine** that, given a list of potentially overlapping intervals (pairs) sorted by the first element of each pair, return a list with the overlapping pairs from the original list having been combined.

```
combine [(1,3);(3,5);(7,9)] = [(1,5);(7,9)]
combine [(1,3);(4,8);(5,9)] = [(1,3);(4,9)]
```

let rec combine lst =

	rotate 2 [1;2;3;4;5] = [3;4;5;1;2] rotate 0 [1;2;3;4;5] = [1;2;3;4;5] rotate 8 [1;2;3;4;5] = [3;4;5;1;2]
let rec rotate lst =	
C. (4 points) Using fold and/o	or map , write a function to compute the sum of squares each item in a
nst of noating point value	$square_sum[1.5;4.0;2.0] = 22.25$
	$square_sum[1.0;2.0;3.0] = 14.00$

 $B. \ \ \text{(8 points) Write a function } \textbf{rotate} \ \text{that, given a list and a positive integer } k, \ \text{rotate the list } k$

elements to the left. You are alloawed to use "@" to merge lists.

let rec square_sum lst =

5. Programming Language Concepts (12 pts)

A. (4 pts) The following code calculates 1+2+3+4n. It is not tail recursive. Rewrite the
function sum, so that it is tail recursive. (You are allowed to add nested helper functions)
let rec sum n = if n=1 then 1 else n + sum(n-1)
<pre>let rec sum n =</pre>

- B. (2 pts) Circle **all** of the statements that apply to the following OCaml pseudocode: let x = E1 in let x = E2 in E3
 - a) In the scope of E1, x is bound
 - b) In the scope of E2, x is bound
 - c) The pseudocode contains an instance of shadowing
 - d) The code is invalid, as there are multiple declarations of x
- C. (1 pts) Which of the following statements is **NOT** true about a language with first-class functions?
 - a) Functions can be passed in as arguments to other functions
 - b) Functions can be returned as the result of calling other functions
 - c) The language does not include imperative features
 - d) The language treats functions on the same level as other data types

D. (1 pts) The fixed-po	int combinator is used to achieve
E. (1 pts)	type checking occurs during a program's compilation.
F. (1 pts) True / False	Statically typed languages are type safe.
G. (2 pts) True / False	I voted.

6. Operational Semantics (10 pts)

Use the language defined by the context-free grammar

$$e \rightarrow n \mid x \mid e + n \mid \text{let } x = e \text{ in } e$$

 $n \to \text{decimal integers}$

 $x \to \text{alphabetic variable names}$

and the operational semantics

Number:
$$\frac{A; e_1 \to n_1}{A; n \to n}$$
 Sum: $\frac{A; e_1 \to n_1}{A; e_1 + e_2 \to n_1 + n_2}$

$$\text{Var: } \frac{A(x) = v}{A; x \to v} \qquad \text{ Let: } \frac{A; e_1 \to v_1}{A; \texttt{let } x \texttt{ = } e_1 \texttt{ in } e_2 \to v_2}$$

to fill in the blank boxes in the following two derivations:

•;let y = 10 in let x = 20 in x + y \rightarrow 30

7. Lambda Calculus (14 pts)

A. Alpha Equivalence (2 point each): For each pair of expressions, determine if they are alpha equivalent. Circle "Equivalent" or "Not Equivalent".

$$\lambda f. \lambda x. f(f x y) y$$

 $\lambda f. \lambda x. f(f x z) z$

Equivalent Not Equivalent

λa. λb. (λa. a b) (λb. b b) a λa. λx. (λa. a x) (λb. x x) a

Equivalent Not Equivalent

B. Beta Reduction: Reduce each expression to normal form. If it reduces infinitely, state that it does not reduce.

(2 points) λx . (λz . z z x) a b

(3 points) $(\lambda x. \lambda y. y x y)$ (a b) $(\lambda m. a m)$

C. Operations on Church Numerals (5 points): Given the following definitions, prove that mult 2 * 0 = 0. Show all of your beta reductions and alpha conversions for full points.

$$0 = \lambda f.\lambda y. y$$
 $2 = \lambda f.\lambda y. f (f y)$ mult $= \lambda M. \lambda N. \lambda f. M (N f)$

Prove mult 2 * 0 = 0