
Fall 2017 Programming Project #3 CMSC 420
Hanan Samet

Program the following 11 functions in LISP. Make sure you test them thoroughly. Pay particular
attention to the efficiency of your solutions. Test data willbe mailed to you. Turn in a run that
includes both a pretty printing of your functions and the execution of said functions on the test data.

1. Ordered lists of numbers (with duplicates):

(a) Write a functionmergelists[x, y] which takes two ordered listsx andy, and makes
one ordered list from them, for example,

mergelists[’(2 3 4), ’(1 4)] = (1 2 3 4 4).

Your algorithm should run in time proportional to the numberof elements in the two
lists.

(b) Usingmergelists, write a functionsortlist[l] which takes an unordered listl and
makes an ordered list of it, for example,

sortlist[’(1 7 3 5 3)] = (1 3 3 5 7).

For an initial list ofn elements, your algorithm should run inO(n logn) time and not
O(n2) time.

(c) Write a predicatedup[l] which indicates if any atom occurs more than once in an
unordered listl, for example,

dup[’(1 3 5 3)] = t

The algorithm should be as efficient assortlist. Make sure you compare numbers
with equal and noteq (eq will generally not returnt for two equal numbers if they are
sufficiently large.)

2. Lists of lists of numbers:

(a) Write a functioncountlists[l] which counts the number of top level lists in a list of
lists, for example,

countlists[’((1 2) (1 3) (1 4))] = 3.

(b) Lexical ordering on lists of numbers is a binary relationdefined by:

lex-lt[x, y] = if null[x] or null[y] then null[x]

else if car[x]=car[y] then lex-lt[cdr[x], cdr[y]]

else car[x]<car[y]

Write a functionduplist_of_lists[l] which returnst if any of the lists in a list of
lists l are identical.duplist_of_lists should be as efficient assortlist.

(c) Given a list of numbers, there are several ways to obtain alist of all permutations of
these numbers. For example, the set of permutations of’(1 2 3) is ’((1 2 3) (1

3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1)). Note that a list ofn numbers hasn!
permutations. There are no duplications in the list and all sublists have the same number
of elements. One strategy, though not very efficient, is to take out each element, saya,
in turn from the list, permute the rest, and then attacha to the front of each permutation.
Write a functionpermute[l] to implement this method.

1



3. S-expressions of numbers:

(a) A cons_tree of a nonempty listx containing nonils, is defined as

cons_tree[x] =

if null[cdr[x]] then car[x]

if x has 2n elements then

cons[cons_tree[first 2n−1 elements of x]

cons_tree[second 2n−1 elements of x]]

else cons_tree[append[x, ’(nil . nil)]].

For example,

cons_tree[’(1 2 3 4 5)]

= (((1 . 2) . (3 . 4)) . ((5 . nil) . (nil . nil))).

Write a functionmake_cons_tree[l] that sorts an unordered list of numbersl and
then returns the correspondingcons_tree, for example,

make_cons_tree[’(3 2 1)] = ((1 . 2) . (3 . nil))

= ((1 . 2) 3)

(b) The natural way to writemake_cons_tree is to follow the definition closely. This
can be rather inefficient due to the use of operations that repeatedly scan the list in a
top-down manner in order to construct lists whose lengths are powers of two. Write
a functionsqueeze[l] that returns thecons_tree of a list l, but doesn’t use any
operations that compute the length of a list. Thus you will doit in a bottom-up manner.
Assume that the list is already sorted. [Hint: your functionshould take timeO(n).]

(c) Write a predicatecons_treep[s] that determines whether or not an arbitrary s-expression
s is acons_tree. For example,

cons_treep[’(nil . 3)] = cons_treep[’(3 . nil)] = nil.

The first one isnil because all occurrences ofnil must be at the end, while the second
is nil because the truecons_tree for a set consisting of just one atom is the atom
itself.

(d) Write a functionbin[n] that returns the list of 1’s and 0’s that correspond to the binary
representation of an integern, for example,

bin[6] = (1 1 0).

(e) Write a functionkthleast[x, k] which takes acons_tree x and an integerk as
arguments and returns thekth least element ofx (nil if no such element exists). For
example,

kthleast[’((1 . 2) . (5 . nil)), 3] = 5.

[Hint: look at the binary representation ofk-1.]

2


