Fall 2017 CMSC 420
Hanan Samet

Programming Assignment 1.
A Data Structure For VLS| Applications!

Abstract

In this assignment you are required to implement an infoilgnananagement system for
handling data similar to that used in VLSI (very large scategration) applications. In such
an environment the primary entities are small rectangldsfaaproblem in which we are inter-
ested is how to manage a large collection of them. In theviafig we trace the development
of a variant of the quadtree data structure that has beenftoulbe useful for such a problem.
Your task is to implement this data structure in such a waydhaumber of operations can be
efficiently handled. An example JAVA applet for the data stawe can be found on the home
page of the class.

This assignment is divided into four parts. C or C++ are thaniteed programming lan-
guages. JAVA is not permitted. Also, you are not allowed tdkenase of any built in data
structures from any library such as, but not limited to, SICi+. For the first two parts, you
must read the attached description of the problem and datetste. A detailed explanation
of the assignment including the specification of the openativhich you are to implement is
found at the end of the description. After you have done s, are to turn in a proposed
implementation of the data structure using C++ classes dructs. This is due at the begin-
ning of the class meeting one week after this assignment éas thistributed to you. No late
solutions will be accepted for this part.

One week later you must turn in a C or C++ program for the conthagcoder (i.e., scanner
for the commands corresponding to the operations whictodse performed on the data struc-
ture). For the third part, you are to write a C or C++ prograiimiplement the data structure and
operations (1)-(9). For the fourth part, you are to impletrogrerations (10)-(14). Operations
(15)-(17) are optional and you will get extra credit if yourtuhem in with part four.

LCopyright ©2017 by Hanan Samet. No part of this document may be reprddstered in a retrieval system, or

transmitted, in any form or by any means, electronic, meicadnphotocopying, recording, or otherwise, without the
express prior permission of the author.

1 Region-Based Quadtrees

The quadtree is a member of a class of hierarchical datatstescthat are based on the principle
of recursive decompaosition. As an example, consider thetppiadtree of Finkel and Bentley [1]
which should be familiar to you as it is simply a multidimensal generalization of a binary search
tree. In two dimensions each node has four subtrees conmeéspto the directionsw, NE, SW, and

SE. Each subtree is commonly referred to as a quadrant or sdiapta For example, see Figure
1.14 where a point quadtree of 8 nodes is presented. In our peggEntve shall only discuss
two-dimensional quadtrees although it should be cleanthat we say can be easily generalized to
more than two dimensions. For the point quadtree the poime@omposition are the data points
themselves (i.e., in Figure 1.14, Chicago at location (@bstibdivides the two dimensional space
into four rectangular regions). Requiring the regions t@bequal size leads to the region quadtree
of Klinger [4,5,6]. This data structure was developed f@resenting homogeneous spatial data
and is used in computer graphics, image processing, gdugehpnformation systems, pattern
recognition, and other applications. For a history andess\of the quadtree representation, see pp.
423-426 in [5].

As an example of the region quadtree, consider the regionrsioFigure 1.28a which is rep-
resented by a®x 22 binary array in Figure 1.28b. Observe that 1's corresporpidinre elements
(termed pixels) which are in the region and Q’s correspongidture elements that are outside the
region. The region quadtree representation is based onutlvessive subdivision of the array into
four equal-size quadrants. If the array does not consisegnof 1's or O's (i.e., the region does not
cover the entire array), then we subdivide it into quadrasibquadrants, ... until we obtain blocks
(possibly single pixels) that consist entirely of 1's oriegly of 0’'s. For example, the resulting
blocks for the region of Figure 1.28b are shown in Figure d.ZBhis process is represented by a
guadtree in which the root node corresponds to the entiag,atre four sons of the root node repre-
sent the quadrants, and the leaf nodes correspond to trades tbbr which no further subdivision is
necessary. Leaf nodes are said to be BLACK or WHITE depenaliinghether their corresponding
blocks are entirely within or outside of the region respedji. All non-leaf nodes are said to be
GRAY. The region quadtree for Figure 1.28c is shown in Figug8d.

2 PR Quadtrees

There are a number of ways of adapting the region quadtresptesent point data. If the domain
of data points is discrete, then we can treat data points @eyf are BLACK pixels in a region
guadtree. If this is not the case, then the data points cadmmoepresented since the minimum
separation between the data points is unknown. This leatdsarsadaptation of the region quadtree
to point data which associates data points (that need nasbeste) with quadrants. In order to avoid
confusion with the point and region quadtrees we call theltieg data structure BR quadtregP

for point and R for region).

The PR quadtree is organized in the same way as the regionrgeiad he difference is that
leaf nodes are either empty (i.e., WHITE) or contain a daiatgoe., BLACK) and the values of
its coordinates. A quadrant contains at most one data péimt.example, Figure 1.31 is the PR
qguadtree corresponding to the data of Figure 1.1. Note timike the region quadtree, when a
non-terminal node has four BLACK sons, they are not mergdus 1B natural since a merger of

2All numbered figures of the form X.YY and page numbers reféstavhile all numbered figures of the form ZZ are
found in this document.

such nodes would lead to a loss of the identifying informratidout the data points. Recall that
each data point is different whereas the empty leaf nodes ti@vabsence of information as their
common property and thus they can be safely merged.

Quadtrees are especially attractive in applications thatlve search. A typical query is one
that requests the determination of all nodes within a spetidistance of a given data point - e.g.,
all cities within 50 miles of Washington, D.C. The efficiermfithe quadtree data structure lies in its
role as a pruning device on the amount of search that is mjuirhus many records will not need
to be examined. As an example, we use the PR quadtree of Higilte Suppose that we wish to
find all cities within 8 units of a data point with coordinatalwes (82,10). In such a case, there is no
need to search thé, NE, andSw quadrants of the root (i.e., nodewith coordinate values (50,50)).
Thus, we can restrict our search to 8quadrant of the tree rooted at natleSimilarly, there is no
need to search th& andNE quadrants of the tree rooted at naré.e., coordinate values (75,25)).

As a further clarification of the amount of pruning of the s#espace that is achievable by use
of quadtrees we make use of Figure 1.27. In particular, givemproblem of finding all nodes within
radius r of points, use of the Figure indicates which quadrants need not beiegdmvhen the root
of the search space, sayis in one of the numbered regions. For exampl&,ig in region 9, then
all but itsNW quadrants must be searched. Similarhg i in region 7, then the subsequent search
can be restricted to th& andNE quadrants oR. For more details on PR quadtrees, see pp. 42-47
in [5].

3 Rectangle Quadtrees

The Rectangle quadtreis a term we use to describe a quadtree-like data structurefoesenting

a large collection of non-overlapping rectangles for aggtlon in computer graphics, VLSI, and

cartography that are raster-based. The goal is to have ahrexaesentation of the rectangles. The
Rectangle quadtree is organized in a similar way to the regiml PR quadtrees. A region is repeat-
edly subdivided into four equal-size quadrants until weaobblocks which do not contain more

than one rectangle. For example, Figure 2 is the block deositign of the Rectangle quadtree

corresponding to the collection of rectangles of Figure IleMRigure 3 is its tree representation.

The termr-pieceis used to refer to a segment of a rectangle that is formedippict a piece

of a rectangle against the border of the region representedduadtree node. It should be clear
that every rectangle in the collection is covered by a sefpidéces that are connected. Note that our
definition of a Rectangle quadtree is very similar to that &fRaquadtree with the difference that
we are representing rectangles rather than points. Thiarhaffect on the definition of what action
to take when the sides of a rectangle are coincident with ¢dinédp of a quadtree node. We make
use of the convention that the left and bottom sides of thmnegpresented by a node are closed
and the right and top sides are open (as done for the PR qegndtre

3.1 Insertion

Rectangles are inserted into a Rectangle quadtree by s&gifch the position which they are to
occupy. We assume that the rectangle does not intersegtolierlap) an existing rectangle. In
particular, a rectangle is inserted into a Rectangle qaadty traversing the tree in preorder and
successively clipping it against the blocks corresponthrige nodes. Clipping is important because
it enables us to avoid looking at areas where the rectangieotde inserted. If the rectangle can
be inserted into the node (i.e., the node is empty),RBapen we are done. Otherwise, a list, say

Figure 1: Sample collection of rectangles.

Figure 2: Blocks corresponding to the quadtree decomposition of the Rectangle
quadtree for the collection of rectangles in Figure 1.

L, is formed containing the rectangle and any r-pieces ajrgaglsent in the node? is split, and
the insertion process is recursively invoked to attempaseit the elements &fin the four sons of
P. For example, Figure 4a—e shows how the Rectangle quadireleef collection of rectangles in
Figure 1 is constructed in incremental fashion for rectesg) B, C, D, andE. We assume that the
empty collection is represented by a one node tree havingatangles.

2 7 16 21
) () () ()

11 25
AllClBllBl [ClIcliDICQ LIEIGIHH 00O
3456 8910 17181920 222324

D|[_I[DIE LI
12131415 262728 29

Figure 3: Tree representation corresponding to the quadtree decomposition of the
Rectangle quadtree for the collection of rectangles in Figure 1.

3.2 Dedetion

Deletion of a rectangle, sdy, from a Rectangle quadtree is analogous to the process os@Rf
guadtrees. The control structure is identical to that usdtie insertion of a rectangle. Again, the
tree is traversed in preorder and the rectangle is sucedgsipped against the blocks correspond-
ing to the nodes. Once a leaf node is encountered in whichngl&R participates, say, the
rectangle is removed fro. Once the remaining brothers Bthave been checked for the presence
of r-pieces ofR, we determine if nodes can be merged (terroelthpsing for more details, see pp.
43-44 and the solutions to the associated exercises in@gfJapsing takes place if the brothers of
P were either empty or contained the r-pieces of the samengletaThe difference from deletion
in a PR quadtree is that in a PR quadtree collapsing can okdypkace if two of the brothers of
P are empty. On the other hand, in the Rectangle quadtreepsoig can take place as long as all
of P’s brothers contain r-pieces of the same rectangle. For plearwwvhen rectanglg is deleted
from Figure 2, the result is that nodes 26, 27, 28, and 29 argaededo yield node 25, which is in
turn merged with nodes 22, 23, and 24 to yield node 21 (seesthédting block decomposition in
Figure 5).

3.3 Search

The most common search query is one that seeks to determéngiven rectangle overlaps (i.e.,
intersects) any of the existing rectangles. This operati@nprerequisite to the successful insertion
of a rectangle. Range queries can also be performed. Howibegrare more usefully cast in terms
of finding all the rectangles in a given area (i.e., a windowrgy Another popular query is one
that seeks to determine if one collection of rectangles eaoverlaid on another collection without
any of the component rectangles intersecting one another.

These two operations can be implemented by using variarafyofithms developed for han-
dling set operations (i.e., union and intersection) inoag¢brased quadtrees [3,7]. The range query

“ v

(=1
c L C)

o= .

Figure 4: Sequence of partial block decompositions showing how a Rectangle quadtree
is built when adding (a) A, (b) B, (c) C, (d) D, and (e) E corresponding to the collection
of rectangles in Figure 1.

is answered by intersecting the query rectangle with thegRgte quadtree. The First, intersect the
two Rectangle quadtrees. If the result is empty, then theyoeasafely overlaid and we merely need
to perform a union of the two Rectangle quadtrees. It shoaldléar that Boolean queries can be
easily handled. An example JAVA applet for the Rectanglaltpea data structure can be found on
the home page of the class.

4 Assignment

This assignment has four parts. It is to be programmed in Ctet. GAVA is not permitted. You are
not allowed to make use of any built in data structures frognldgmary such as, but not limited to,
STL in C++. The first part is concerned with data structured@n. The second part requires the
construction of a command decoder. The third and fourttspaduire that you implement a given
set of operations.

The first part is to be turned at the next class meeting afieragsignment has been distributed
to you. It is worth 10 points. The second part is also worth @ihts. It is to be turned in one

Figure 5: Rectangle quadtree result of deleting rectangle J from the collection of
rectangles given in Figure 1.

week after you turn in the data structure. There will be N@ fatbmissions accepted for these two
parts of the assignment. While doing parts one and two yoalaceto start thinking and coding the
program necessary to implement the operations. This sHmuldone in such a way that the data
structure is a BLACK BOX. Thus you need to specify your primas in such a way that they are
independent of the data structure finally chosen. You aomgly advised to begin implementing
some of the operations. For example, you should implemepugsut routine so that you can see
whether your program is working properly.

For the third and fourth parts of the assignment, you are it\arC or C++ program to imple-
ment the data structure and the specified operations. Tegtby are worth 60 points. Part three
consists of operations (1)-(9) given below. They are wortbtal of 30 points, with varying point
values for the different operations. Part four consistspafrations (10)-(14) given below. They are
worth 30 points. Operations (15)-(17) are for extra credil are to be turned in with part four.
They are worth up to 4 points apiece.

In order to facilitate grading and your task, you are to usedita structure implementation that
will be given to you in class on the first meeting date after tton in the first part of the assignment.
For any operation that is not implemented, §&y your command decoder must output a message
of the form ¢ ‘COMMAND OP IS NOT IMPLEMENTED’’.

In order to facilitate your program as well as lend some seatio your task you are to implement
the Rectangle quadtree in a raster-based graphics enwrdnifhis means that you are dealing with
a world of pixels. The size of the world can be varied, and i¥ a 2" array of pixels. As a default,
you should assume =7, i.e., a size of 12& 128. The pixel at the lower left corner has coordinate
values (0,0) and the pixel at the upper right corner has ¢oatel values (2— 1,2¥ —1). Each pixel
serves as the center of a square of sizell This is the smallest unit into which our quadtrees
will decompose the world. Note that the endpoints and widftike rectangles will be restricted to
integers. All rectangles are of siz8+1i) x (3+), where 0<i <125 and < j < 125. In other
words, the smallest rectangle is of size 3 and the largest is 128128.

One class meeting date before the due date of each part ofdfeetpyou will be informed of
the availability of and name of the test data file which youtanese in exercising your program for
grading purposes. You should also prepare your own test dasample file for this purpose will
also be provided. In addition, you are also to test your coitle some randomly generated data,
which in this case is a randomly generated rectangle. Youldltmme up with a reasonable way of
generating random rectangles. You should think about wina¢ans to generate a random rectangle
and about their expected sizes so that they are well-digédrather than all being of approximately
the same size, and whether they have a high likelihood ofsgetting. This will require that you
examine the types of rectangles that you are generating.

4.1 Data Structure Selection

You are to select a data structure to implement the Rectangldtree. Turn in a definition in the
form of a set of C++ classes or C structs. Again, you are notvatl to make use of any built
in data structures from any library such as, but not limi@dSTL in C++. In doing this part of
the assignment you should bear in mind the type of data tHagirgy represented and the type of
of operations that will be performed on it. In order to easeryiask, remember that the primitive
entity is the rectangle. We specify a rectangle by givingXlaady coordinate values of its lower
left corner, and the horizontal and vertical distancesstbdrders (i.e., the lengths of its sides). The
rest of your task is to build on this entity adding any othdoimation that is necessary. The nature
of the operations is described in Sections 4.3—4.5.

From the description of the operations you will see that asmerassociated with each rectangle.
Each rectangle is assigned a uniqgue name. At times, thetaperare specified in terms of these
names. Thus you will also need a mechanism to efficiently ke of these names. It should be
integrated with the data structure that keeps track of tlengéry of the rectangles.

4.2 Command Decoder

You are to turn in a working command decoder written in C or @arall the commands (including
the optional ones) given in Sections 4.3—4.5. You are noeebegl to do error recovery and can
assume that the commands are syntactically correct. Alhcanas will fit on one line. Lengths of
names are restricted to 6 characters or less and can be afynetion of letters or digits (e.ga,

1, 24, B33, etc.). However, for your own safety you may wish to incogiersome primitive error
handling. Test data for this part of the assignment will benfbin a file specified by the Teaching
Assistant.

The output for the command decoder consists of the numbéeddieration (e.g., “1” for com-
mandINIT_QUADTREE) and the actual values of the parameters if the command lygsaaameters
(e.g., the value off IDTH for the INIT_QUADTREE command).

4.3 Part Three: Basic Operations

In order to facilitate grading of these operations as wethasadvanced and optional operations in
Sections 4.4 and 4.5, respectively, please provide a traipeipof the execution of the operations
which lists the nodes (both leaf and nonleaf) that have bésted while executing the operation.
This trace is initiated by the comman®@ACE ON and is terminated by the commamBACE OFF.

In order for the trace output to be concise, you are to reptessch node of the rectangle quadtree

that has been visited by a unique number which is formed &safel The root of the quadtree is
assigned the number 0. Given a node with numYbeits NW, NE, SW, andSE children are labeled

4-N+1,4-N+2,4-N+3, and 4 N + 4, respectively. For example, starting at the root, ltde

child is numbered 2, while th&E child of theNw child of the root is numbered 4*(4*0+1)+4=8.

(1) (1 point) Initialize the quadtree. The commariiiT_QUADTREE (WIDTH) is always the first
command in the input strearWIDTH determines the length of each side of the square are covered
by the quadtree. Each side has the lendfi™. It also has the effect of starting with a fresh data
set.

(2) (1 point) Generate a display of &2™ x 2"IPTH square from the Rectangle quadtree. It is invoked
by the comman®ISPLAY (). To draw the Rectangle quadtree, you are to use the drawirimes
provided. An appendix to the project description coverdthge, and the utilitieSHOWQUAD and
PRINTQUAD, that can be used to render the output of your programs onegrs@r a printer. A
dashed (broken) line should be used to draw quadrant lingsthk rectangles should be solid
(i.e., not dashed). Rectangle names should be output soenewlear the rectangle or within the
rectangle. When this convention causes the output of a goatine to coincide with the output of
the boundary of a rectangle, then the output of the rectaiagiles precedence and the coincident
part of the quadrant line is not output.

(3) (3 points) List all the rectangles in the data base inafpimerical order. This means that letters
come before digits in the collating sequence. Similarlgr&dr identifiers precede longer ones. For
example, a sorted list is, AB, A3D, 3DA, 5. It is invoked by the commantIST_RECTANGLES()
and yields for each rectangle its name, ¥handy coordinate values of its lower left corner, and
the horizontal and vertical distances to its borders froenltiver left corner (i.e., the lengths of its
sides). This is of use in interpreting the display since domes it is not possible to distinguish the
boundaries of the rectangles from the display. You shosldall of the rectangles in the database
whether or not they have been deleted.

(4) (1 point) Create a rectangle by specifying the coordinaiues of its lower left corner and the
distances to its borders, and assign it a name for subsegsentlt is invoked by the command
CREATE_RECTANGLE(N,LLX,LLY,LX,LY) whereN is the name to be associated with the rectangle,
LLX andLLY are thex andy coordinate values, respectively, of its lower left correrdLX and

LY are the horizontal and vertical distances, respectivelitstborders from the lower left corner.
LLX, LLY, LX, andLY must be integer numbers. Output an appropriate messagmiimgj that the
rectangle has been created as well as its name and endpdatésthat any rectangle can be created
— even if it is outside the space spanned by the Rectanglerggad

There is also a variant of this query calleREATE_RECTANGLE_RANDOM(N) that generates a rect-
angle at random which means thatx, LLY, LX, andLY are generated at random subject to the
above conditions that these values are integers in the ppai® range.

(5) (5 points) Determine whether a query rectangle intéss@e., overlaps) any of the existing
rectangles. This operation is a prerequisite to the suftdessertion of a rectangle in the Rectangle
guadtree. It is invoked by the commaRHCTANGLE_SEARCH (N) whereN is a name of a rectangle.
If the rectangle does not intersect an existing rectanbkn RECTANGLE _SEARCH returns a value
of false and outputs an appropriate message suchfaDOES NOT INTERSECT AN EXISTING
RECTANGLE’’. Otherwise, it returns the value true and uses the nameiat=sibavith one of the
intersecting rectangles (i.e., if it intersects more thae cectangle) to output the following two
messages: ‘N INTERSECTS RECTANGLE [NAME OF RECTANGLE]’’. Note that if an endpoint of
the query rectangle touches the endpoint of an existingmet, therRECTANGLE_SEARCH returns
false. You are only to check against the rectangles thatratieel Rectangle quadtree of existing

rectangles, and not the rectangles that existed at somertithe past and have been deleted by the
time this command is executed.

(6) (5 points) Insert a rectangle in the Rectangle quadtféiee rectangle intersects an existing rect-
angle, then do not make the insertion and report this facebyrming the name of the intersecting
rectangle. Also, if any part of the rectangle is outside thece spanned by the Rectangle quadtree,
then do not make the insertion and report this fact by a deitalessage such a¥SERTION OF
RECTANGLE N FAILED AS N LIES PARTIALLY OUTSIDE SPACE SPANNED BY RECTANGLE QUADTREE.
Otherwise, return the name of the rectangle that is beingrtied as well as output a message in-
dicating that this has been done. It is invoked by the comnIal3&RT (N) whereN is the name

of a rectangle. It should be clear that the Rectangle quadsrbuilt by a sequence GREATE_-
RECTANGLE andINSERT operations.

(7) (4 points) Given a point, return the name of the rectatigge contains it. It is invoked by the
commandEARCH_POINT (PX,PY) wherePX andPY are thex andy coordinate values, respectively,
of the point. If no such rectangle exists, then output a ngessadicating that the point is not
contained in any of the rectangles.

(8) (6 points) Delete a rectangle or a set of rectangles flmrRectangle quadtree. This operation
has two variantELETE_RECTANGLE andDELETE_POINT. The comman@ELETE_RECTANGLE (N)
deletes the rectangle namgdIt returnsN if it was successful in deleting the specified rectangle
and outputs a message indicating it. Otherwise, it outpu@pgropriate message. The command
DELETE_POINT(PX,PY) has as its argument a point within the rectangle to be deletedex and

y coordinate values are given X andPY, respectively.DELETE_POINT returns as its value the
name of the rectangle that has been deleted and prints anpaigie message indicating its name.
If the point is not in any rectangle, then an appropriate mgssndicating this is output. The code
for DELETE_POINT should make use cfEARCH_POINT. Note that rectangl# is only deleted from
the Rectangle quadtree and not from the database of reesang|

(9) (4 points) Move arectangle in the Rectangle quadtree.cBmmand is invoked I§OVE (N, CX, CY)
whereN is the name of the rectangléxX, CY are the translation of the centroid Wfacross thex
andy coordinate axes, and they must be integers The commanasétuf it was successful in
moving the specified rectangle and outputs a message imgjagat Otherwise, output appropriate
error messages If was not found in the Rectangle quadtree, or if after the djpera lies outside
the space spanned by the Rectangle quadtree. Note thatdtesstul execution of the operation
requires that the moved rectangle does not overlap any aixiséing rectangles in which case an
appropriate error message is emitted.

4.4 Part Four: Advanced Operations

(10) (6 points) Determine all the rectangles in the Recnmgladtree that touch (i.e., are adja-
cent along a side or a corner) a given rectangle. This operasi invoked by the command
TOUCH(N) whereN is the name of a rectangle. Since rectanglés referenced by namey
thus must be in the database for the operation to work butetneot necessarily be in the
Rectangle quadtree. The command returns the names of albdlcbed rectangles in conjunc-
tion with the following messagé ‘N SHARES ENDPOINT [X AND Y COORDINATE VALUES OF
ENDPOINT] WITH THE RECTANGLES [NAME OF RECTANGLES]’’. Otherwise, the command re-
turnsNIL. For each rectanglethat touchesy, display (i.e., highlight) the point in for which the

x andy coordinate values are minimum (i.e., the lower-leftmosheg). It should be clear that the
intersection of with N is empty.

(11) (6 points) Determine all of the rectangles in the Regiarquadtree that lie within a given
distance of a given rectangle. This is the so-called ‘larhpdzblem. Given a distance (an integer
here although it could also be a real number in the more gecasa), it is invoked by the command
WITHIN(N,D) whereN is the name of the query rectangle. In essence, this opereinstructs a
query rectangl® with the same centroid asand distance&X+D andLY+D to the border. Now,
the query returns the identity of all rectangles whose satetion with the region formed by the
difference of andN is not empty (i.e,, any rectangiethat has at least one point in common with
Q-N). In other words, we have a shell of widtharoundN and we want all the rectangles that have
a point in common with this shell. Rectangieneed not necessarily be in the Rectangle quadtree.
Note that for this operation you must recursively travergettee to find the rectangles that overlap
the query region. You will NOT be given credit for a solutidrat uses neighbor finding, such as
one (but not limited to) that starts at the centroidiand finds its neighbors in increasing order of
distance. This is the basis of another operation.

(12) (6 points) Find the nearest neighboring rectangle e hhbrizontal and vertical directions,
respectively, to a given rectangle. To locate a horizon&gglmbor, use the commaribRIZ_-
NEIGHBOR (N) whereN is the name of the query rectangiERT_NEIGHBOR (N) locates a vertical
neighbor. By “nearest” horizontal (vertical) neighboriregctangle, it is meant the rectangle whose
vertical (horizontal) side, or extension, is closest to dieal (horizontal) side of the query rectan-
gle. If the vertical (horizontal) extension of a side of eewler causes the extended sideratfo
intersect the query rectangle, thers deemed to be at distance 0 and is thus not a candidate neigh-
bor. In other words, the distance has to be greater than Zdw@.commands return as their value
the name of the neighboring rectangle if one exists ¥rid otherwise as well as an appropriate
message. Rectandgieneed not necessarily be in the Rectangle quadtree. If mareathe rectangle
is at the same distance, then return the name of just onerof tRete that rectangles that are inside
N are not considered by this query.

(13) (6 points) Given a point, return the name of the neamstingle. By “nearest,” it is meant
the rectangle whose side or corner is closest to the pointe that this rectangle could also be a
rectangle that contains the point. In this case, the distéseero. It is invoked by the command
NEAREST_RECTANGLE (PX,PY) wherePX andPY are thex andy coordinate values, respectively,
of the point. If no such rectangle exists (e.g., when the isaampty), then output an appropriate
message (i.e., that the tree is empty). If more than onengletas at the same distance, then return
the name of just one of them.

(14) (6 points) Find all rectangles in a rectangular windowtered at a given point. It is invoked
by the commandaINDOW (LLX,LLY,LX,LY) whereLLX andLLY are thex andy coordinate values,
respectively, of the lower left corner of the window akbxiandLY are the horizontal and vertical
distances, respectively, to its borders from the cornerurMutput is a list of the names of the
rectangles that are completely inside the window, and dajigpf the Rectangle quadtree that only
shows the rectangles that are in the window. This is simdaa tlipping operation. Draw the
boundary of the window using a dashed rectangle. Do not shagrgnt lines within the window.
All arguments toVINDOW are integers (i.eLX, LY LLX, andLLY). Note that for this operation you
must recursively traverse the tree to find the rectangléotrelap the query region. You will NOT
be given credit for a solution that uses neighbor findinghsagcone (but not limited to) that starts at
the centroid of the window and finds its neighbors in incnegsirder of distance. This is the basis
of another operation.

10

4.5 Optional Operations

(15) (4 points) Find the nearest neighbor in all directiamthe boundary of a given rectangle. It is
invoked by the commangEAREST _NEIGHBOR (N) whereN is the name of a rectangle. By “nearest,”
it is meant the rectangl€ with a point on its side or corner, s&; such that the distance from

to a side or corner of the query rectangle is a minimWMAREST _NEIGHBOR returns as its value
the name of the neighboring rectangle if one exists ¥rid otherwise as well as an appropriate
message. Rectandlieneed not necessarily be in the Rectangle quadtree. If maneathe rectangle
is at the same distance, then return the name of just onerof tNete that rectangles that are inside
N are not considered by this query. Note that rectangles tedhaideN are not considered by this
query.

(16) (4 points) Given a rectangle, find its nearest neighbithh & name that is lexicographically
greater. It is invoked by the comman@8XICALLY_GREATER_NEAREST_NEIGHBOR (N) whereN is
the name of a rectangle. By “lexically greater nearest” inisant the rectangl€ whose name is
lexicographically greater than that®iwith a point onC’s side, sayP, such that the distance frofh

to a side of the query rectangle is a miniMUubEXICALLY_GREATER_NEAREST_NEIGHBOR returns
as its value the name of the neighboring rectangle if one®®isdNIL otherwise as well as an
appropriate message. Rectangleeed not necessarily be in the Rectangle quadtree. If mare th
one rectangle is at the same distance, then return the najust ohe of them. Note that rectangles
that are insid&l are not considered by this query. This operation should xerinéne more than the
minimum number of rectangles that are necessary to detertinénlexicographically greater nearest
neighbor. Thus you should use an incremental nearest raigidporithm (e.qg., [2]).

(17) (4 points) Perform connected component labeling orRibetangle quadtree. This means that
all touching rectangles are assigned the same label. Bghing,” it is meant that the rectangles
are adjacent along a side or a corner. This is accomplisheédebgommand.ABEL (). The result

of the operation is a display of the Rectangle quadtree wdleteuching rectangles are shown with
the same label. Use integer labels.

References

[1] R. A. Finkel and J. L. Bentley, Quad trees: a data strucfar retrieval on composite key&gcta
Informatica 4 1(1974), 1-9.

[2] G. R. Hjaltason and H. Samet, Distance browsing in spdti#abasesACM Transactions on
Database System24(2):265-318, June 1999. Also Computer Science TR-381®ersity of
Maryland, College Park, MD, anfldvances in Spatial Databases — 4th International Sympusiu
SSD'95 M. J. Egenhofer and J. R. Herring, eds., pages 83-95, RdrtME, August 1995, and
Springer-Verlag Lecture Notes in Computer Science 951.

[3] G. M. Hunter and K. Steiglitz, Operations on images ugjjugd trees|EEE Transactions on
Pattern Analysis and Machine IntelligenceZ{April 1979), 145-153.

[4] A. Klinger, Patterns and Search StatisticsQptimizing Methods in Statistics. S. Rustagi, Ed.,
Academic Press, New York, 1971, 303-337.

[5] H. Samet,Foundations of Multidimensional and Metric Data StructureMorgan-Kaufmann,
San Francisco, 2006.

[6] H. Samet Applications of Spatial Data Structures: Computer Graghieage Processing, and
GIS, Addison-Wesley, Reading, MA, 1990.

11

[7] M. Shneier, Calculations of geometric properties ugjugdtreesComputer Graphics and Im-
age Processing 18(July 1981), 296—-302.

12

