
Fall 2017 CMSC 420
Hanan Samet

Programming Assignment 1:
A Data Structure For VLSI Applications1

Abstract

In this assignment you are required to implement an information management system for
handling data similar to that used in VLSI (very large scale integration) applications. In such
an environment the primary entities are small rectangles and the problem in which we are inter-
ested is how to manage a large collection of them. In the following we trace the development
of a variant of the quadtree data structure that has been found to be useful for such a problem.
Your task is to implement this data structure in such a way that a number of operations can be
efficiently handled. An example JAVA applet for the data structure can be found on the home
page of the class.

This assignment is divided into four parts. C or C++ are the permitted programming lan-
guages. JAVA is not permitted. Also, you are not allowed to make use of any built in data
structures from any library such as, but not limited to, STL in C++. For the first two parts, you
must read the attached description of the problem and data structure. A detailed explanation
of the assignment including the specification of the operations which you are to implement is
found at the end of the description. After you have done this,you are to turn in a proposed
implementation of the data structure using C++ classes or C structs. This is due at the begin-
ning of the class meeting one week after this assignment has been distributed to you. No late
solutions will be accepted for this part.

One week later you must turn in a C or C++ program for the command decoder (i.e., scanner
for the commands corresponding to the operations which are to be performed on the data struc-
ture). For the third part, you are to write a C or C++ program toimplement the data structure and
operations (1)-(9). For the fourth part, you are to implement operations (10)-(14). Operations
(15)-(17) are optional and you will get extra credit if you turn them in with part four.

1Copyright c©2017 by Hanan Samet. No part of this document may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
express prior permission of the author.



1 Region-Based Quadtrees

The quadtree is a member of a class of hierarchical data structures that are based on the principle
of recursive decomposition. As an example, consider the point quadtree of Finkel and Bentley [1]
which should be familiar to you as it is simply a multidimensional generalization of a binary search
tree. In two dimensions each node has four subtrees corresponding to the directionsNW, NE, SW, and
SE. Each subtree is commonly referred to as a quadrant or subquadrant. For example, see Figure
1.142 where a point quadtree of 8 nodes is presented. In our presentation we shall only discuss
two-dimensional quadtrees although it should be clear thatwhat we say can be easily generalized to
more than two dimensions. For the point quadtree the points of decomposition are the data points
themselves (i.e., in Figure 1.14, Chicago at location (35,40) subdivides the two dimensional space
into four rectangular regions). Requiring the regions to beof equal size leads to the region quadtree
of Klinger [4,5,6]. This data structure was developed for representing homogeneous spatial data
and is used in computer graphics, image processing, geographical information systems, pattern
recognition, and other applications. For a history and review of the quadtree representation, see pp.
423-426 in [5].

As an example of the region quadtree, consider the region shown in Figure 1.28a which is rep-
resented by a 23×23 binary array in Figure 1.28b. Observe that 1’s correspond topicture elements
(termed pixels) which are in the region and 0’s correspond topicture elements that are outside the
region. The region quadtree representation is based on the successive subdivision of the array into
four equal-size quadrants. If the array does not consist entirely of 1’s or 0’s (i.e., the region does not
cover the entire array), then we subdivide it into quadrants, subquadrants, ... until we obtain blocks
(possibly single pixels) that consist entirely of 1’s or entirely of 0’s. For example, the resulting
blocks for the region of Figure 1.28b are shown in Figure 1.28c. This process is represented by a
quadtree in which the root node corresponds to the entire array, the four sons of the root node repre-
sent the quadrants, and the leaf nodes correspond to those blocks for which no further subdivision is
necessary. Leaf nodes are said to be BLACK or WHITE dependingon whether their corresponding
blocks are entirely within or outside of the region respectively. All non-leaf nodes are said to be
GRAY. The region quadtree for Figure 1.28c is shown in Figure1.28d.

2 PR Quadtrees

There are a number of ways of adapting the region quadtree to represent point data. If the domain
of data points is discrete, then we can treat data points as ifthey are BLACK pixels in a region
quadtree. If this is not the case, then the data points cannotbe represented since the minimum
separation between the data points is unknown. This leads usto an adaptation of the region quadtree
to point data which associates data points (that need not be discrete) with quadrants. In order to avoid
confusion with the point and region quadtrees we call the resulting data structure aPR quadtree(P
for point and R for region).

The PR quadtree is organized in the same way as the region quadtree. The difference is that
leaf nodes are either empty (i.e., WHITE) or contain a data point (i.e., BLACK) and the values of
its coordinates. A quadrant contains at most one data point.For example, Figure 1.31 is the PR
quadtree corresponding to the data of Figure 1.1. Note that,unlike the region quadtree, when a
non-terminal node has four BLACK sons, they are not merged. This is natural since a merger of

2All numbered figures of the form X.YY and page numbers refer to[5] while all numbered figures of the form ZZ are
found in this document.

1



such nodes would lead to a loss of the identifying information about the data points. Recall that
each data point is different whereas the empty leaf nodes have the absence of information as their
common property and thus they can be safely merged.

Quadtrees are especially attractive in applications that involve search. A typical query is one
that requests the determination of all nodes within a specified distance of a given data point - e.g.,
all cities within 50 miles of Washington, D.C. The efficiencyof the quadtree data structure lies in its
role as a pruning device on the amount of search that is required. Thus many records will not need
to be examined. As an example, we use the PR quadtree of Figure1.31. Suppose that we wish to
find all cities within 8 units of a data point with coordinate values (82,10). In such a case, there is no
need to search theNW, NE, andSW quadrants of the root (i.e., nodeA with coordinate values (50,50)).
Thus, we can restrict our search to theSE quadrant of the tree rooted at nodeA. Similarly, there is no
need to search theNW andNE quadrants of the tree rooted at nodeD (i.e., coordinate values (75,25)).

As a further clarification of the amount of pruning of the search space that is achievable by use
of quadtrees we make use of Figure 1.27. In particular, giventhe problem of finding all nodes within
radius r of pointA, use of the Figure indicates which quadrants need not be examined when the root
of the search space, sayR, is in one of the numbered regions. For example, ifR is in region 9, then
all but itsNW quadrants must be searched. Similarly, ifR is in region 7, then the subsequent search
can be restricted to theNW andNE quadrants ofR. For more details on PR quadtrees, see pp. 42-47
in [5].

3 Rectangle Quadtrees

TheRectangle quadtreeis a term we use to describe a quadtree-like data structure for representing
a large collection of non-overlapping rectangles for application in computer graphics, VLSI, and
cartography that are raster-based. The goal is to have an exact representation of the rectangles. The
Rectangle quadtree is organized in a similar way to the region and PR quadtrees. A region is repeat-
edly subdivided into four equal-size quadrants until we obtain blocks which do not contain more
than one rectangle. For example, Figure 2 is the block decomposition of the Rectangle quadtree
corresponding to the collection of rectangles of Figure 1 while Figure 3 is its tree representation.

The termr-piece is used to refer to a segment of a rectangle that is formed by clipping a piece
of a rectangle against the border of the region represented by a quadtree node. It should be clear
that every rectangle in the collection is covered by a set of r-pieces that are connected. Note that our
definition of a Rectangle quadtree is very similar to that of aPR quadtree with the difference that
we are representing rectangles rather than points. This hasan effect on the definition of what action
to take when the sides of a rectangle are coincident with the border of a quadtree node. We make
use of the convention that the left and bottom sides of the region represented by a node are closed
and the right and top sides are open (as done for the PR quadtree).

3.1 Insertion

Rectangles are inserted into a Rectangle quadtree by searching for the position which they are to
occupy. We assume that the rectangle does not intersect (i.e., overlap) an existing rectangle. In
particular, a rectangle is inserted into a Rectangle quadtree by traversing the tree in preorder and
successively clipping it against the blocks correspondingto the nodes. Clipping is important because
it enables us to avoid looking at areas where the rectangle cannot be inserted. If the rectangle can
be inserted into the node (i.e., the node is empty), sayP, then we are done. Otherwise, a list, say

2



A

J

I

GH

F

B

C

E
D

Figure 1: Sample collection of rectangles.

A

J

I

GH

F

B

C

E
D

Figure 2: Blocks corresponding to the quadtree decomposition of the Rectangle
quadtree for the collection of rectangles in Figure 1.

L, is formed containing the rectangle and any r-pieces already present in the node,P is split, and
the insertion process is recursively invoked to attempt to insert the elements ofL in the four sons of
P. For example, Figure 4a–e shows how the Rectangle quadtree for the collection of rectangles in
Figure 1 is constructed in incremental fashion for rectanglesA, B, C, D, andE. We assume that the
empty collection is represented by a one node tree having no rectangles.

3



D D E
12 13 14 15

A C B B
3 4 5 6

C C D
8 9 10

I J
26 27 28 29

F G H
17 18 19 20

I I I
22 23 24

2 7 16 21

1

2511

Figure 3: Tree representation corresponding to the quadtree decomposition of the
Rectangle quadtree for the collection of rectangles in Figure 1.

3.2 Deletion

Deletion of a rectangle, sayR, from a Rectangle quadtree is analogous to the process used for PR
quadtrees. The control structure is identical to that used in the insertion of a rectangle. Again, the
tree is traversed in preorder and the rectangle is successively clipped against the blocks correspond-
ing to the nodes. Once a leaf node is encountered in which rectangleR participates, sayP, the
rectangle is removed fromP. Once the remaining brothers ofP have been checked for the presence
of r-pieces ofR, we determine if nodes can be merged (termedcollapsing; for more details, see pp.
43-44 and the solutions to the associated exercises in [5]).Collapsing takes place if the brothers of
P were either empty or contained the r-pieces of the same rectangle. The difference from deletion
in a PR quadtree is that in a PR quadtree collapsing can only take place if two of the brothers of
P are empty. On the other hand, in the Rectangle quadtree collapsing can take place as long as all
of P’s brothers contain r-pieces of the same rectangle. For example, when rectangleJ is deleted
from Figure 2, the result is that nodes 26, 27, 28, and 29 are merged to yield node 25, which is in
turn merged with nodes 22, 23, and 24 to yield node 21 (see the resulting block decomposition in
Figure 5).

3.3 Search

The most common search query is one that seeks to determine ifa given rectangle overlaps (i.e.,
intersects) any of the existing rectangles. This operationis a prerequisite to the successful insertion
of a rectangle. Range queries can also be performed. However, they are more usefully cast in terms
of finding all the rectangles in a given area (i.e., a window query). Another popular query is one
that seeks to determine if one collection of rectangles can be overlaid on another collection without
any of the component rectangles intersecting one another.

These two operations can be implemented by using variants ofalgorithms developed for han-
dling set operations (i.e., union and intersection) in region-based quadtrees [3,7]. The range query

4



A A

B

A

B

C
A

B

C

D

A

B

C

E
D

(a) (b)

(c) (d)

(e)

Figure 4: Sequence of partial block decompositions showing how a Rectangle quadtree
is built when adding (a) A, (b) B, (c) C, (d) D, and (e) E corresponding to the collection
of rectangles in Figure 1.

is answered by intersecting the query rectangle with the Rectangle quadtree. The First, intersect the
two Rectangle quadtrees. If the result is empty, then they can be safely overlaid and we merely need
to perform a union of the two Rectangle quadtrees. It should be clear that Boolean queries can be
easily handled. An example JAVA applet for the Rectangle quadtree data structure can be found on
the home page of the class.

4 Assignment

This assignment has four parts. It is to be programmed in C or C++. JAVA is not permitted. You are
not allowed to make use of any built in data structures from any library such as, but not limited to,
STL in C++. The first part is concerned with data structure selection. The second part requires the
construction of a command decoder. The third and fourth parts require that you implement a given
set of operations.

The first part is to be turned at the next class meeting after this assignment has been distributed
to you. It is worth 10 points. The second part is also worth 10 points. It is to be turned in one

5



A

I

GH

F

B

C

E
D

Figure 5: Rectangle quadtree result of deleting rectangle J from the collection of
rectangles given in Figure 1.

week after you turn in the data structure. There will be NO late submissions accepted for these two
parts of the assignment. While doing parts one and two you arealso to start thinking and coding the
program necessary to implement the operations. This shouldbe done in such a way that the data
structure is a BLACK BOX. Thus you need to specify your primitives in such a way that they are
independent of the data structure finally chosen. You are strongly advised to begin implementing
some of the operations. For example, you should implement anoutput routine so that you can see
whether your program is working properly.

For the third and fourth parts of the assignment, you are to write a C or C++ program to imple-
ment the data structure and the specified operations. Together they are worth 60 points. Part three
consists of operations (1)-(9) given below. They are worth atotal of 30 points, with varying point
values for the different operations. Part four consists of operations (10)-(14) given below. They are
worth 30 points. Operations (15)-(17) are for extra credit and are to be turned in with part four.
They are worth up to 4 points apiece.

In order to facilitate grading and your task, you are to use the data structure implementation that
will be given to you in class on the first meeting date after youturn in the first part of the assignment.
For any operation that is not implemented, sayOP, your command decoder must output a message
of the form‘‘COMMAND OP IS NOT IMPLEMENTED’’.

In order to facilitate your program as well as lend some realism to your task you are to implement
the Rectangle quadtree in a raster-based graphics environment. This means that you are dealing with
a world of pixels. The size of the world can be varied, and is a 2w×2w array of pixels. As a default,
you should assumew = 7, i.e., a size of 128×128. The pixel at the lower left corner has coordinate
values (0,0) and the pixel at the upper right corner has coordinate values (2w−1,2w−1). Each pixel
serves as the center of a square of size 1× 1. This is the smallest unit into which our quadtrees
will decompose the world. Note that the endpoints and widthsof the rectangles will be restricted to
integers. All rectangles are of size(3+ i)× (3+ j), where 0≤ i ≤ 125 and 0≤ j ≤ 125. In other
words, the smallest rectangle is of size 3×3 and the largest is 128×128.

6



One class meeting date before the due date of each part of the project you will be informed of
the availability of and name of the test data file which you areto use in exercising your program for
grading purposes. You should also prepare your own test data. A sample file for this purpose will
also be provided. In addition, you are also to test your code with some randomly generated data,
which in this case is a randomly generated rectangle. You should come up with a reasonable way of
generating random rectangles. You should think about what it means to generate a random rectangle
and about their expected sizes so that they are well-distributed rather than all being of approximately
the same size, and whether they have a high likelihood of intersecting. This will require that you
examine the types of rectangles that you are generating.

4.1 Data Structure Selection

You are to select a data structure to implement the Rectanglequadtree. Turn in a definition in the
form of a set of C++ classes or C structs. Again, you are not allowed to make use of any built
in data structures from any library such as, but not limited to, STL in C++. In doing this part of
the assignment you should bear in mind the type of data that isbeing represented and the type of
of operations that will be performed on it. In order to ease your task, remember that the primitive
entity is the rectangle. We specify a rectangle by giving thex andy coordinate values of its lower
left corner, and the horizontal and vertical distances to its borders (i.e., the lengths of its sides). The
rest of your task is to build on this entity adding any other information that is necessary. The nature
of the operations is described in Sections 4.3–4.5.

From the description of the operations you will see that a name is associated with each rectangle.
Each rectangle is assigned a unique name. At times, the operations are specified in terms of these
names. Thus you will also need a mechanism to efficiently keeptrack of these names. It should be
integrated with the data structure that keeps track of the geometry of the rectangles.

4.2 Command Decoder

You are to turn in a working command decoder written in C or C++for all the commands (including
the optional ones) given in Sections 4.3–4.5. You are not expected to do error recovery and can
assume that the commands are syntactically correct. All commands will fit on one line. Lengths of
names are restricted to 6 characters or less and can be any combination of letters or digits (e.g.,A,
1, 2A, B33, etc.). However, for your own safety you may wish to incorporate some primitive error
handling. Test data for this part of the assignment will be found in a file specified by the Teaching
Assistant.

The output for the command decoder consists of the number of the operation (e.g., “1” for com-
mandINIT_QUADTREE) and the actual values of the parameters if the command has any parameters
(e.g., the value ofWIDTH for theINIT_QUADTREE command).

4.3 Part Three: Basic Operations

In order to facilitate grading of these operations as well asthe advanced and optional operations in
Sections 4.4 and 4.5, respectively, please provide a trace output of the execution of the operations
which lists the nodes (both leaf and nonleaf) that have been visited while executing the operation.
This trace is initiated by the commandTRACE ON and is terminated by the commandTRACE OFF.
In order for the trace output to be concise, you are to represent each node of the rectangle quadtree

7



that has been visited by a unique number which is formed as follows. The root of the quadtree is
assigned the number 0. Given a node with numberN, its NW, NE, SW, andSE children are labeled
4 ·N + 1, 4·N + 2, 4·N + 3, and 4·N + 4, respectively. For example, starting at the root, theNE

child is numbered 2, while theSE child of theNW child of the root is numbered 4*(4*0+1)+4=8.

(1) (1 point) Initialize the quadtree. The commandINIT_QUADTREE(WIDTH) is always the first
command in the input stream.WIDTH determines the length of each side of the square are covered
by the quadtree. Each side has the length 2WIDTH. It also has the effect of starting with a fresh data
set.

(2) (1 point) Generate a display of a 2WIDTH×2WIDTH square from the Rectangle quadtree. It is invoked
by the commandDISPLAY(). To draw the Rectangle quadtree, you are to use the drawing routines
provided. An appendix to the project description covers their use, and the utilitiesSHOWQUAD and
PRINTQUAD, that can be used to render the output of your programs on a screen or a printer. A
dashed (broken) line should be used to draw quadrant lines, but the rectangles should be solid
(i.e., not dashed). Rectangle names should be output somewhere near the rectangle or within the
rectangle. When this convention causes the output of a quadrant line to coincide with the output of
the boundary of a rectangle, then the output of the rectangletakes precedence and the coincident
part of the quadrant line is not output.

(3) (3 points) List all the rectangles in the data base in alphanumerical order. This means that letters
come before digits in the collating sequence. Similarly, shorter identifiers precede longer ones. For
example, a sorted list isA, AB, A3D, 3DA, 5. It is invoked by the commandLIST_RECTANGLES()
and yields for each rectangle its name, thex andy coordinate values of its lower left corner, and
the horizontal and vertical distances to its borders from the lower left corner (i.e., the lengths of its
sides). This is of use in interpreting the display since sometimes it is not possible to distinguish the
boundaries of the rectangles from the display. You should list all of the rectangles in the database
whether or not they have been deleted.

(4) (1 point) Create a rectangle by specifying the coordinate values of its lower left corner and the
distances to its borders, and assign it a name for subsequentuse. It is invoked by the command
CREATE_RECTANGLE(N,LLX,LLY,LX,LY)whereN is the name to be associated with the rectangle,
LLX andLLY are thex andy coordinate values, respectively, of its lower left corner,andLX and
LY are the horizontal and vertical distances, respectively, to its borders from the lower left corner.
LLX, LLY, LX, andLY must be integer numbers. Output an appropriate message indicating that the
rectangle has been created as well as its name and endpoints.Note that any rectangle can be created
— even if it is outside the space spanned by the Rectangle quadtree.

There is also a variant of this query calledCREATE_RECTANGLE_RANDOM(N) that generates a rect-
angle at random which means thatLLX, LLY, LX, andLY are generated at random subject to the
above conditions that these values are integers in the appropriate range.

(5) (5 points) Determine whether a query rectangle intersects (i.e., overlaps) any of the existing
rectangles. This operation is a prerequisite to the successful insertion of a rectangle in the Rectangle
quadtree. It is invoked by the commandRECTANGLE_SEARCH(N) whereN is a name of a rectangle.
If the rectangle does not intersect an existing rectangle, thenRECTANGLE_SEARCH returns a value
of false and outputs an appropriate message such as‘‘N DOES NOT INTERSECT AN EXISTING

RECTANGLE’’. Otherwise, it returns the value true and uses the name associated with one of the
intersecting rectangles (i.e., if it intersects more than one rectangle) to output the following two
messages:‘‘N INTERSECTS RECTANGLE [NAME OF RECTANGLE]’’. Note that if an endpoint of
the query rectangle touches the endpoint of an existing rectangle, thenRECTANGLE_SEARCH returns
false. You are only to check against the rectangles that are in the Rectangle quadtree of existing

8



rectangles, and not the rectangles that existed at some timein the past and have been deleted by the
time this command is executed.

(6) (5 points) Insert a rectangle in the Rectangle quadtree.If the rectangle intersects an existing rect-
angle, then do not make the insertion and report this fact by returning the name of the intersecting
rectangle. Also, if any part of the rectangle is outside the space spanned by the Rectangle quadtree,
then do not make the insertion and report this fact by a suitable message such asINSERTION OF

RECTANGLE N FAILED AS N LIES PARTIALLY OUTSIDE SPACE SPANNED BY RECTANGLE QUADTREE.
Otherwise, return the name of the rectangle that is being inserted as well as output a message in-
dicating that this has been done. It is invoked by the commandINSERT(N) whereN is the name
of a rectangle. It should be clear that the Rectangle quadtree is built by a sequence ofCREATE_-
RECTANGLE andINSERT operations.

(7) (4 points) Given a point, return the name of the rectanglethat contains it. It is invoked by the
commandSEARCH_POINT(PX,PY)wherePX andPY are thex andy coordinate values, respectively,
of the point. If no such rectangle exists, then output a message indicating that the point is not
contained in any of the rectangles.

(8) (6 points) Delete a rectangle or a set of rectangles from the Rectangle quadtree. This operation
has two variants,DELETE_RECTANGLEandDELETE_POINT. The commandDELETE_RECTANGLE(N)
deletes the rectangle namedN. It returnsN if it was successful in deleting the specified rectangle
and outputs a message indicating it. Otherwise, it outputs an appropriate message. The command
DELETE_POINT(PX,PY) has as its argument a point within the rectangle to be deletedwhosex and
y coordinate values are given byPX andPY, respectively.DELETE_POINT returns as its value the
name of the rectangle that has been deleted and prints an appropriate message indicating its name.
If the point is not in any rectangle, then an appropriate message indicating this is output. The code
for DELETE_POINT should make use ofSEARCH_POINT. Note that rectangleN is only deleted from
the Rectangle quadtree and not from the database of rectangles.

(9) (4 points) Move a rectangle in the Rectangle quadtree. The command is invoked byMOVE(N,CX,CY)
whereN is the name of the rectangle,CX, CY are the translation of the centroid ofN across thex
andy coordinate axes, and they must be integers The command returns N if it was successful in
moving the specified rectangle and outputs a message indicating it. Otherwise, output appropriate
error messages ifN was not found in the Rectangle quadtree, or if after the operation N lies outside
the space spanned by the Rectangle quadtree. Note that the successful execution of the operation
requires that the moved rectangle does not overlap any of theexisting rectangles in which case an
appropriate error message is emitted.

4.4 Part Four: Advanced Operations

(10) (6 points) Determine all the rectangles in the Rectangle quadtree that touch (i.e., are adja-
cent along a side or a corner) a given rectangle. This operation is invoked by the command
TOUCH(N) where N is the name of a rectangle. Since rectangleN is referenced by name,N
thus must be in the database for the operation to work but it need not necessarily be in the
Rectangle quadtree. The command returns the names of all thetouched rectangles in conjunc-
tion with the following message‘‘N SHARES ENDPOINT [X AND Y COORDINATE VALUES OF

ENDPOINT] WITH THE RECTANGLES [NAME OF RECTANGLES]’’. Otherwise, the command re-
turnsNIL. For each rectangler that touchesN, display (i.e., highlight) the point inr for which the
x andy coordinate values are minimum (i.e., the lower-leftmost corner). It should be clear that the
intersection ofr with N is empty.

9



(11) (6 points) Determine all of the rectangles in the Rectangle quadtree that lie within a given
distance of a given rectangle. This is the so-called ‘lambda’ problem. Given a distanceD (an integer
here although it could also be a real number in the more general case), it is invoked by the command
WITHIN(N,D) whereN is the name of the query rectangle. In essence, this operation constructs a
query rectangleQ with the same centroid asN and distancesLX+D andLY+D to the border. Now,
the query returns the identity of all rectangles whose intersection with the region formed by the
difference ofQ andN is not empty (i.e,, any rectangler that has at least one point in common with
Q-N). In other words, we have a shell of widthD aroundN and we want all the rectangles that have
a point in common with this shell. RectangleN need not necessarily be in the Rectangle quadtree.
Note that for this operation you must recursively traverse the tree to find the rectangles that overlap
the query region. You will NOT be given credit for a solution that uses neighbor finding, such as
one (but not limited to) that starts at the centroid ofN and finds its neighbors in increasing order of
distance. This is the basis of another operation.

(12) (6 points) Find the nearest neighboring rectangle in the horizontal and vertical directions,
respectively, to a given rectangle. To locate a horizontal neighbor, use the commandHORIZ_-
NEIGHBOR(N) whereN is the name of the query rectangle.VERT_NEIGHBOR(N) locates a vertical
neighbor. By “nearest” horizontal (vertical) neighboringrectangle, it is meant the rectangle whose
vertical (horizontal) side, or extension, is closest to a vertical (horizontal) side of the query rectan-
gle. If the vertical (horizontal) extension of a side of rectangler causes the extended side ofr to
intersect the query rectangle, thenr is deemed to be at distance 0 and is thus not a candidate neigh-
bor. In other words, the distance has to be greater than zero.The commands return as their value
the name of the neighboring rectangle if one exists andNIL otherwise as well as an appropriate
message. RectangleN need not necessarily be in the Rectangle quadtree. If more than one rectangle
is at the same distance, then return the name of just one of them. Note that rectangles that are inside
N are not considered by this query.

(13) (6 points) Given a point, return the name of the nearest rectangle. By “nearest,” it is meant
the rectangle whose side or corner is closest to the point. Note that this rectangle could also be a
rectangle that contains the point. In this case, the distance is zero. It is invoked by the command
NEAREST_RECTANGLE(PX,PY) wherePX andPY are thex andy coordinate values, respectively,
of the point. If no such rectangle exists (e.g., when the treeis empty), then output an appropriate
message (i.e., that the tree is empty). If more than one rectangle is at the same distance, then return
the name of just one of them.

(14) (6 points) Find all rectangles in a rectangular window anchored at a given point. It is invoked
by the commandWINDOW(LLX,LLY,LX,LY)whereLLX andLLY are thex andy coordinate values,
respectively, of the lower left corner of the window andLX andLY are the horizontal and vertical
distances, respectively, to its borders from the corner. Your output is a list of the names of the
rectangles that are completely inside the window, and a display of the Rectangle quadtree that only
shows the rectangles that are in the window. This is similar to a clipping operation. Draw the
boundary of the window using a dashed rectangle. Do not show quadrant lines within the window.
All arguments toWINDOW are integers (i.e.,LX, LY LLX, andLLY). Note that for this operation you
must recursively traverse the tree to find the rectangles that overlap the query region. You will NOT
be given credit for a solution that uses neighbor finding, such as one (but not limited to) that starts at
the centroid of the window and finds its neighbors in increasing order of distance. This is the basis
of another operation.

10



4.5 Optional Operations

(15) (4 points) Find the nearest neighbor in all directions to the boundary of a given rectangle. It is
invoked by the commandNEAREST_NEIGHBOR(N)whereN is the name of a rectangle. By “nearest,”
it is meant the rectangleC with a point on its side or corner, sayP, such that the distance fromP
to a side or corner of the query rectangle is a minimum.NEAREST_NEIGHBOR returns as its value
the name of the neighboring rectangle if one exists andNIL otherwise as well as an appropriate
message. RectangleN need not necessarily be in the Rectangle quadtree. If more than one rectangle
is at the same distance, then return the name of just one of them. Note that rectangles that are inside
N are not considered by this query. Note that rectangles that are insideN are not considered by this
query.

(16) (4 points) Given a rectangle, find its nearest neighbor with a name that is lexicographically
greater. It is invoked by the commandLEXICALLY_GREATER_NEAREST_NEIGHBOR(N) whereN is
the name of a rectangle. By “lexically greater nearest” it ismeant the rectangleC whose name is
lexicographically greater than that ofN with a point onC’s side, sayP, such that the distance fromP
to a side of the query rectangle is a minimum.LEXICALLY_GREATER_NEAREST_NEIGHBOR returns
as its value the name of the neighboring rectangle if one exists andNIL otherwise as well as an
appropriate message. RectangleN need not necessarily be in the Rectangle quadtree. If more than
one rectangle is at the same distance, then return the name ofjust one of them. Note that rectangles
that are insideN are not considered by this query. This operation should not examine more than the
minimum number of rectangles that are necessary to determine the lexicographically greater nearest
neighbor. Thus you should use an incremental nearest neighbor algorithm (e.g., [2]).

(17) (4 points) Perform connected component labeling on theRectangle quadtree. This means that
all touching rectangles are assigned the same label. By “touching,” it is meant that the rectangles
are adjacent along a side or a corner. This is accomplished bythe commandLABEL(). The result
of the operation is a display of the Rectangle quadtree whereall touching rectangles are shown with
the same label. Use integer labels.

References

[1] R. A. Finkel and J. L. Bentley, Quad trees: a data structure for retrieval on composite keys,Acta
Informatica 4, 1(1974), 1–9.

[2] G. R. Hjaltason and H. Samet, Distance browsing in spatial databases,ACM Transactions on
Database Systems, 24(2):265–318, June 1999. Also Computer Science TR-3919,University of
Maryland, College Park, MD, andAdvances in Spatial Databases — 4th International Symposium,
SSD’95, M. J. Egenhofer and J. R. Herring, eds., pages 83–95, Portland, ME, August 1995, and
Springer-Verlag Lecture Notes in Computer Science 951.

[3] G. M. Hunter and K. Steiglitz, Operations on images usingquad trees,IEEE Transactions on
Pattern Analysis and Machine Intelligence 1, 2(April 1979), 145–153.

[4] A. Klinger, Patterns and Search Statistics, inOptimizing Methods in Statistics, J. S. Rustagi, Ed.,
Academic Press, New York, 1971, 303–337.

[5] H. Samet,Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann,
San Francisco, 2006.

[6] H. Samet,Applications of Spatial Data Structures: Computer Graphics, Image Processing, and
GIS, Addison-Wesley, Reading, MA, 1990.

11



[7] M. Shneier, Calculations of geometric properties usingquadtrees,Computer Graphics and Im-
age Processing 16, 3(July 1981), 296–302.

12


