
CMSC 451 Dave Mount

CMSC 451: Lecture 16
Network Flow Algorithms

Thursday, Nov 7, 2016

Reading: Sections 7.1, 7.3, and 7.5 in KT.

Algorithmic Aspects of Network Flow: In the previous lecture, we presented the Ford-Ful-
kerson algorithm. We showed that on termination this algorithm produces the maximum
flow in an s-t network. In this lecture we discuss the algorithm’s running time, and discuss
more efficient alternatives.

Analysis of Ford-Fulkerson: Before discussing the worst-case running time of the Ford-Fulker-
son algorithm, let us first consider whether it is guaranteed to terminate. We assume that all
edge capacities are integers.1 Every augmentation by Ford-Fulkerson increases the flow by an
integer amount. Thus, the resulting residual network also has integer capacities. Therefore,
after a finite number of augmentations the algorithm must terminate.

Lemma: Given an s-t network with integer capacities, the Ford-Fulkerson algorithm termi-
nates. Furthermore, it produces an integer-valued flow function.

Recall our convention that n = |V | and m = |E|. Since we assume that every vertex is
reachable from s, it follows that m ≥ n − 1. Therefore, n = O(m). Running times of the
form O(n + m) can be expressed more simply as O(m).

As we saw last time, the residual network can be computed in O(n + m) = O(m) time
and an augmenting path can also be found in O(m) time. Therefore, the running time of
each augmentation step is O(m). How many augmentations are needed? Unfortunately, the
number could be very large. To see this, consider the example shown in Fig. 1.

s

100

100

u

v

t

100

100

1

(a)

s

1/100

0/100

u

v

t

0/100

1/100

1/1

(b)

s

1/100

1/100

u

v

t

1/100

1/100

0/1

(c)

s

100/100

100/100

u

v

t

100/100

100/100

0/1

(d)

Initial network 1st augmentation 2nd augmentation 200th augmentation

Fig. 1: Bad example for Ford-Fulkerson.

Suppose that we (foolishly) elect to augment using a path from s to t that uses the vertical
edge in the middle, alternately increasing its flow to 1 and reducing it to 0. It would take

1This is not an unreasonable assumption. First, observe that if we multiply all the capacities by some positive
constant c, all the flow values can be increased by this same factor. Assuming that the capacities are represented
as fixed-point decimals with k digits to the right of decimal point, we can scale each capacity by c = 10k, which
converts all the capacities to integers. We solve this integer-capacity problem, and then divide the final result by c,
thus mapping the solution back to the original instance.

Lecture 16 1 Fall 2017

CMSC 451 Dave Mount

200 augmentation steps to converge. We could replace 100 with whatever huge value we want
and make the running time arbitrarily high.

If we let |f | denote the final maximum flow value, the number of augmentation steps can be as
high as |f |. If we make the reasonable assumption that each augmentation step takes at least
Ω(m) time, the total running time can be as high as Ω(m|f |). Since |f | may be arbitrarily
high (it depends neither on n or m), this running time could be arbitrarily high, as a function
of n and m.

Scaling Algorithm: In the above example, we made the apparently foolish decision to augment
on a path of very low capacity. Can we do better by selecting paths of high capacity? We will
see an example of such an algorithm, called the scaling algorithm. For the sake of efficiency,
the algorithm does not augment along the path of highest possible capacity, merely a path of
relatively high capacity.

The idea is to start with an upper bound on the maximum possible flow. The sum of capacities
of the edges leaving s suffices, that is, C =

∑
(s,v)∈E c(s, v). Clearly, the maximum flow value

cannot exceed C. We initialize the scaling parameter ∆ to be the largest power of 2, such
that ∆ ≤ C. Given any flow f (initially the flow of value 0), define Gf (∆) to be the residual
network consisting only of edges of residual capacity at least ∆. Since we only deal with
integer capacities, when ∆ = 1, Gf (∆) is the true residual network. Intuitively, whenever
we find an augmenting path in Gf (∆), we are guaranteed to push at least ∆ units of flow,
which means that we are guaranteed to make good progress. Next, find an s-t path in Gf (∆),
augment the flow along this path, and update Gf (∆) accordingly. We repeat the process
until no augmenting paths remain. We then set ∆← ∆/2 and repeat. When the value of ∆
falls below 1, we terminate the algorithm and return the final flow. See the code block below
and Fig. 2.

Scaling Algorithm for Network Flow
scaling-flow(G = (V, E, s, t)) {

f = 0 // all edges carry zero flow

D = largest power of 2 not larger than sum of capacities out of s

while (D >= 1) { // when D = 1, Gf(D) has all edges

Gf(D) = residual of G w.r.t. f, keeping only edges of capacity >= D

while (there is an s-t path in Gf(D)) }

P = any augmenting s-t path in Gf(D) // augment along the "fat" edges

f’ = augmenting flow for P

f = f + f’

}

D = D/2 // shrink D’s value

}

return f // return the final flow

}

Analysis of the Scaling Algorithm: We refer to the Kleinberg and Tardos book for a complete
analysis of the scaling algorithm. Intuitively, the algorithm is efficient because each augmen-
tation increases the flow by an amount of at least ∆. The minimum cut can have at most m
edges. So, after O(m) such augmentations, we will have effectively increased the flow along

Lecture 16 2 Fall 2017

CMSC 451 Dave Mount

8

20

10

75075
8

20

10

45 8

20

50 10

35 75075

45
35

s

a

d

c

70

45 8

b t9020

80
50 10

75 35

80

s

a

d

c

70

b t90

80

80

G(64)

s

a

d

c

70

b t0

70

0 s

a

d

cb t90

10
50

80

|f ′| = 70 Gf (64)

70
70

s

a

d

cb t90

10
50

80

G(32)

70
70

35
35

s

a

d

cb t0

0

35

0
0

|f ′| = 35

10
35

s

a

d

cb t90

10
50

45

70
70

Gf (32)

35

45 8

20

10

35

35

8

20

10

75
10

35

s

a

d

cb t90

10
50

45

70
70

G(16)

35

35

20

0 0

s

a

d

cb t
20

0

20

0 0

|f ′| = 20

0

0

8

20

10

75
10

35

s

a

d

cb t

10
50

25

70
70

Gf (16)

35

55
70
20

8

20

10

75
10

35

s

a

d

cb t

10
50

25

70
70

G(8)

35

55
70
20

8

0

0
8

0

s

a

d

cb t

0

0

|f ′| = 8

0

0
0
0

00 0

8

20

10

75
2

35

s

a

d

cb t

10
50

25

70
70

Gf (8)

43

55
70
20

s

a

d

c

70

43 8

b t2020

70
0 0

0 35

55

Flow after 4 stages:

Fig. 2: The first four stages of the scaling algorithm for network flow. Note that at each stage, the
value of the augmenting flow f ′ is at least ∆. (The algorithm will run for G(4), G(2), and G(1),
but no changes to the flow will occur.)

Lecture 16 3 Fall 2017

CMSC 451 Dave Mount

every edge of the minimum cut so much that its capacity in the residual graph falls below ∆.
When all the edges of the minimum cut disappear from Gf (∆), it is not possible to augment
further, and the algorithm goes on to the next smaller value of ∆.

Since each augmentation involves running BFS (or DFS) in O(n+m) = O(m) time, it follows
that after O(m2) time, we will exhaust augmentations in Gf (∆), and will proceed to the next
smaller value of ∆. After O(logC) halvings of ∆, we will have ∆ < 1, and the algorithm
will terminate. Thus, the overall running time is O(m2 logC). (It can be shown that a more
efficient implementation runs in time O(nm logC).)

Pseudo-Polynomial and Strong Polynomial Time: Earlier, we complained that the Ford-
Fulkerson algorithm is not really efficient, since its running time depends on the maximum
flow value. The scaling algorithm also depends on the maximum flow value (albeit logarith-
mically rather than linearly). So, it what sense can we claim it is “efficient”?

Observe first that if the capacities are all small integers, then we can ignore the logC compo-
nent, and so the running time is just O(m2) which is polynomial in the input size. (Efficient
algorithms generally run in polynomial time, as opposed to exponential time.)

The algorithm is really inefficient when the capacities are huge numbers. Observe that if C
is extremely large, then we require many bits to represent these numbers. Indeed, it takes
Θ(logC) bits to represent a number of magnitude C. Thus, if we think of the input size from
the perspective of total number of bits needed to represent the input graph, it can be shown
that the scaling algorithm runs in time that is polynomial in this number of bits. (We will
leave the details as an exercise.)

An algorithm whose running time is polynomial in the number of bits of input is called
a pseudo-polynomial time algorithm. In contrast, an algorithm that runs in time that is
polynomial in the number of words of input (such as n and m), is referred as running in
strongly polynomial time.

Edmonds-Karp Algorithm: As mentioned above, neither of the algorithms we have seen runs
in strongly polynomial time, that is, polynomial in n and m, irrespective of the magnitudes
of the capacity. Edmonds and Karp developed such an algorithm in the 1970’s (and it is
claimed Dinic actually discovered this algorithm independently a couple years earlier).

This algorithm uses Ford-Fulkerson as its basis, but with the minor change that the s-t path
that is chosen in the residual network has the smallest number of edges. In particular, this just
means that we run BFS in the residual graph from s to t to compute the augmenting path. It
can be shown that the total number of augmenting steps using this method is O(nm).2 Since
each augmentation takes O(m) time to run BFS, the overall running time is O(nm2).

Even Faster Algorithms: The max-flow problem is widely studied, and there are many different
algorithms. No one knows that what the lowest possible running time is for network flow, but
a running time of O(nm) has stood as an important milestone. See Table 1 for a summary
of important results.

2This is not trivial to prove. Neither of our textbooks gives a proof, but one can be found in the algorithms book
by Cormen, Leiserson, Rivest, and Stein. Intuitively, it can be shown that after at most m augmentations, some
vertex’s distance from s increases by one, never to decrease again. Since a vertex’s distance from s cannot exceed n,
it follows that there are at most O(nm) augmentations.

Lecture 16 4 Fall 2017

CMSC 451 Dave Mount

After a long sequence of improvements, in 2013 it was shown that the problem can be solved
in this time. The final algorithm is not very elegant. It is a hybrid of two different algorithms,
one by King, Rao, and Tarjan (KRT) that runs in O(nm) time for dense graphs and another
by Orlin that runs in O(nm) time for sparse graphs. Whether there exist a unified algorithm
that achieves this bound or even faster algorithms remain as open research questions.

Table 1: Running times of various network-flow algorithms (n = |V |, m = |E|, C is any upper
bound on the maximum flow).

Algorithm Year Time Notes

Ford-Fulkerson 1956 O(mC)
Gabow 1985 O(nm logC) Scaling
Edmonds-Karp 1972 O(nm2) Ford-Fulkerson + augment shortest paths
Dinic 1970 O(n2m) Blocking flows in a layered graph
Dinic + Tarjan 1983 O(nm log n) Dinic + better data structures
Preflow push 1986 O(nm log(n2/m)) Goldberg and Tarjan
King, Rao, Tarjan 1994 O(mn log m

n logn
n) O(nm) if m = O(n1+ε)

Orlin + KRT 2013 O(nm) Orlin: O(nm) time for m ≤ O(n16/15−ε)
KRT: O(nm) for m > n1+ε

Applications of Max-Flow: The network flow problem has a huge number of applications. Many
of these applications do not appear at first to have anything to do with networks or flows.
This is a testament to the power of this problem. In this lecture and the next, we will present
a few applications from our book. (If you need more convincing of this, however, see the
exercises in Chapter 7 of KL. There are over 40 problems, most of which involve reductions
to network flow.)

Maximum Matching in Bipartite Graphs: There are many applications where it is desirable
to compute a pairing between two sets of objects. We present such a problem, called bipartite
matching in the form of a “dating game,” but the algorithm can be applied whenever it
is desired to find pairing between objects of different classes subject to some compatibility
criterion.

Suppose you are running a dating service, and there are a set of men X and a set of women
Y . Using a questionnaire you establish which men are compatible which women. Your task is
to pair up as many compatible pairs of men and women as possible, subject to the constraint
that each man is paired with at most one woman, and vice versa. (It may be that some men
are not paired with any woman.)

Recall that an undirected graph G = (V,E) is said to be bipartite if V can be partitioned
into two sets X and Y , such that every edge has one endpoint in X and the other in Y . This
problem can be modeled as an undirected, bipartite graph whose vertex set is V = X∪Y and
whose edge set consists of pairs (u, v), u ∈ X, v ∈ Y such that u and v are compatible (see
Fig. 3(a)). Given a graph, a matching is defined to be a subset of edges M ⊆ E such that
for each v ∈ V , there is at most one edge of M incident to v. Clearly, the objective to the

Lecture 16 5 Fall 2017

CMSC 451 Dave Mount

dating problem is to find a maximum matching in G that has the highest cardinality. Such a
matching is called a maximum matching (see Fig. 3(b)).

Compatibility

constraints

c

b

a

d

e

x

w

v

y

z

A maximum matching

c

b

a

d

e

x

w

v

y

z

(a) (b)

Fig. 3: A bipartite graph G and a maximum matching in G.

The resulting undirected graph has the property that its vertex set can be divided into two
groups such that all its edges go from one group to the other. This problem is called the
maximum bipartite matching problem.

We will now show a reduction from maximum bipartite matching to network flow. In par-
ticular, we will show that, given any bipartite graph G (see Fig. 4(a)) for which we want to
solve the maximum matching problem, we can convert it into an instance of network flow G′,
such that the maximum matching on G can be extracted from the maximum flow on G′.

To do this, we construct a flow network G′ = (V ′, E′) as follows. Let s and t be two new
vertices and let V ′ = V ∪ {s, t}.

E′ =


{(s, u) | u ∈ X} ∪ (connect source to left-side vertices)
{(v, t) | v ∈ Y } ∪ (connect right-side vertices to sink)
{(u, v) | (u, v) ∈ E} (direct G’s edges from left to right).

Set the capacity of all edges in this network to 1 (see Fig. 4(b)).

Flow network G′

all capacities = 1

c

b

a

d

e

s tx

w

v

y

z

Maximum flow

c

b

a

d

e

s tx

w

v

y

z

Final matching in G

c

b

a

d

e

x

w

v

y

z

(b) (c) (d)

Input graph G

c

b

a

d

e

x

w

v

y

z

(a)

1/1 0/1

Fig. 4: Reducing bipartite matching to network flow.

Compute the maximum flow in G′ (see Fig. 4(c)). The following lemma show that maximizing
the flow in G′ is equivalent to finding a maximum matching in G.

Lecture 16 6 Fall 2017

CMSC 451 Dave Mount

Lemma: Given a bipartite graph G, G has a matching of size x if and only if G′ (constructed
above) has a flow of value x.

Proof: (⇒) Let M denote any matching in G. We construct a flow in G′ as follows. For
each edge (x, y) ∈M , set the flow along edges (s, x), (x, y), and (y, t) to 1. All the edges
remaining edges of G are assigned a flow of 0. We assert that f is a valid flow for G′.
By our construction, each vertex x receives one unit of flow coming in from s, sends one
unit to y, and y sends one unit to t. Therefore, we have flow conservation. Second, since
M is a matching, each vertex of X or Y is incident to a single edge of M , which implies
that it carries at most one unit of flow, which implies that the capacity constraints are
all satisfied. Therefore, f is a valid flow in G′. By our construction, |f | = |M |.
(⇐) Suppose that G′ has a flow f . We may assume that this is an integer flow. Since
all edges have capacity 1, it follows that the flow value on each edge is either 0 or 1.

Let M denote the edges of X × Y that are carrying unit flow in f . Observe that for
every vertex of X, it has exactly one incoming edge (from s) of capacity 1, and hence it
can be incident to at most one edge of M . Symmetrically, every vertex of Y has exactly
one outgoing edge (to t) of capacity 1, and hence it also can be incident to at most one
edge of M . Therefore, M is a matching in the original graph G. (An example is shown
in Fig. 4(d)). Since each edge carries one unit of flow, the total value of the flow is the
number of edges of M , that is, |f | = |M |.

Because the capacities are so low, we do not need to use a fancy implementation. Recall that
Ford-Fulkerson runs in time O(m · F ∗), where F ∗ is the final maximum flow. In our case
F ∗ is at most n (the size of the largest possible matching). Therefore, the running time of
Ford-Fulkerson on this instance is O(m · F ∗) = O(nm).

There are other algorithms for maximum bipartite matching. The best is due to Hopcroft
and Karp, and runs in O(

√
n ·m) time.

Lecture 16 7 Fall 2017

