Logistic Regression \& Neural Networks

CMSC 723 / LING 723 / INST 725

Marine Carpuat

Logistic Regression

Perceptron \& Probabilities

- What if we want a probability $p(y \mid x)$?
- The perceptron gives us a prediction y
- Let's illustrate this with binary classification

In other words:

$$
\begin{aligned}
& P(y=1 \mid x)=1 \text { if } w \cdot \varphi(x) \geq 0 \text { 齐 } \\
& P(y=1 \mid x)=0 \text { if } w \cdot \varphi(x)<0
\end{aligned}
$$

The logistic function

- x : the input
- $\varphi(x)$: vector of feature functions $\left\{\varphi_{1}(\mathrm{x}), \varphi_{2}(\mathrm{x}), \ldots, \varphi_{1}(\mathrm{x})\right\}$
- w: the weight vector $\left\{w_{1}, w_{2}, \ldots, w_{1}\right\}$
- y : the prediction, +1 if "yes", -1 if "no"

- "Softer" function than in perceptron
- Can account for uncertainty
- Differentiable

Logistic regression: how to train?

- Train based on conditional likelihood
- Find parameters w that maximize conditional likelihood of all answers y_{i} given examples x_{i}

$$
\hat{\boldsymbol{w}}=\underset{w}{\operatorname{argmax}} \prod_{i} P\left(y_{i} \mid x_{i} ; w\right)
$$

Stochastic gradient ascent (or descent)

- Online training algorithm for logistic regression
- and other probabilistic models
create map w for I iterations for each labeled pair x, y in the data $w+=\alpha^{*} d P(y \mid x) / d w$
- Update weights for every training example
- Move in direction given by gradient
- Size of update step scaled by learning rate

Gradient of the logistic function

$$
\begin{aligned}
\frac{d}{d w} P(y=1 \mid x) & =\frac{d}{d w} \frac{e^{w \cdot \varphi(x)}}{1+e^{w \cdot \varphi(x)}} \\
& =\varphi(x) \frac{e^{w \cdot \varphi(x)}}{\left(1+e^{w \cdot \varphi(x)}\right)^{2}} \\
\frac{d}{d w} P(y=-1 \mid x) & =\frac{d}{d w}\left(1-\frac{e^{w \cdot \varphi(x)}}{1+e^{w \cdot \varphi(x)}}\right) \\
& =-\varphi(x) \frac{e^{w \cdot \varphi(x)}}{\left(1+e^{w \cdot \varphi(x)}\right)^{2}}
\end{aligned}
$$

Example: Person/not-person classification problem

Given an introductory sentence in Wikipedia predict whether the article is about a person

| $\underline{\text { Given }}$ |
| :--- | :--- |
| Gonso was a Sanron sect priest (754-827) |
| in the late Nara and early Heian periods. |\longrightarrow| Predict |
| :--- |
| Shichikuzan Chigogataki Fudomyoo is |
| a historical site located at Magura, Maizuru |
| City, Kyoto Prefecture. |

Example: initial update

- Set $\alpha=1$, initialize $w=0$
$\mathbf{x}=\mathrm{A}$ site , located in Maizuru , Kyoto $\mathrm{y}=-1$

$$
\begin{aligned}
& \boldsymbol{w} \cdot \varphi(x)=0 \quad \frac{d}{d w} P(y=-1 \mid x)=-\frac{e^{0}}{\left(1+e^{0}\right)^{2}} \varphi(x) \\
& =-0.25 \varphi(x) \\
& w \leftarrow w+\stackrel{\text { ' }}{+} 0.25 \varphi(x) \\
&
\end{aligned}
$$

Example: second update

$$
\begin{aligned}
& x=\text { Shoken , monk born in Kyoto } \quad y=1 \\
& -0.5 \quad-0.25-0.25 \\
& \boldsymbol{w} \cdot \boldsymbol{\varphi}(x)=-1 \quad \frac{d}{d w} P(y=1 \mid x)=\frac{e^{1}}{\left(1+e^{1}\right)^{2}} \varphi(x) \\
& =0.196 \varphi(x) \\
& w \leftarrow w+0.196 \varphi(x) \\
& \begin{array}{llllll}
\mathrm{W}_{\text {unigram "Maizuru" }} & =-0.25 & \mathrm{~W}_{\text {unigram "A" }} & =-0.25 & \mathrm{~W}_{\text {unigram "Shoken" }}=0.196 \\
\mathrm{~W}_{\text {unigram "," }} & =-0.304 & \mathrm{~W}_{\text {unigram "site" }} & =-0.25 & \mathrm{~W}_{\text {unigram "monk" }}=0.196 \\
\mathrm{~W}_{\text {unigram "in" }} & =-0.054 & \mathrm{~W}_{\text {unigram "located" }}=-0.25 & \mathrm{~W}_{\text {unigram "born" }}=0.196 \\
\mathrm{~W}=-0.054 & &
\end{array}
\end{aligned}
$$

How to set the learning rate?

- Various strategies
- decay over time

$$
\alpha=\frac{1}{C+t}
$$

Parameter

Number of
samples

- Use held-out test set, increase learning rate when likelihood increases

Multiclass version

$$
\mathrm{p}(y \mid \boldsymbol{x})=\frac{\exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}(\boldsymbol{x}, y)\right)}{\sum_{y^{\prime} \in \mathcal{V}} \exp \left(\boldsymbol{\theta}^{\top} \boldsymbol{f}\left(\boldsymbol{x}, y^{\prime}\right)\right)} .
$$

Some models are better then others...

- Consider these 2 examples
-1 he saw a bird in the park
+1 he saw a robbery in the park
- Which of the 2 models below is better?

```
Classifier 1
he +3
saw -5 robbery +1
a +0.5
bird -1
robbery +1
in +5
the - 3
park -2
```

Classifier 2 will probably generalize better!
It does not include irrelevant information
=> Smaller model is better

Regularization

- A penalty on adding extra weights
- L2 regularization: $\|w\|_{2}$
- big penalty on large weights
- small penalty on small weights
- L1 regularization: $\|w\|_{1}$
- Uniform increase when large or small
- Will cause many weights to become zero

L1 regularization in online learning

update_weights(w, phi, y, c)
for name, value in w :
if abs(value) $<c$: If abs. value $<c$, $w[$ name $]=0$
else:
set weight to zero
If value >0,
 for name, value in phi:
w[name] += value * y
If value <0, increase by c

What you should know

- Standard supervised learning set-up for text classification
- Difference between train vs. test data
- How to evaluate
- 3 examples of supervised linear classifiers
- Naïve Bayes, Perceptron, Logistic Regression
- Learning as optimization: what is the objective function optimized?
- Difference between generative vs. discriminative classifiers
- Smoothing, regularization
- Overfitting, underfitting

Neural networks

Person/not-person classification problem

Given an introductory sentence in Wikipedia predict whether the article is about a person

Given
Gonso was a Sanron sect priest (754-827) in the late Nara and early Heian periods.

Shichikuzan Chigogataki Fudomyoo is a historical site located at Magura, Maizuru City, Kyoto Prefecture.

Predict

- Yes!
- No!

Formalizing binary prediction

$$
\begin{aligned}
y & =\operatorname{sign}(w \cdot \varphi(x)) \\
& =\operatorname{sign}\left(\sum_{i=1}^{I} w_{i} \cdot \varphi_{i}(x)\right)
\end{aligned}
$$

- x : the input
- $\varphi(\mathrm{x})$: vector of feature functions $\left\{\varphi_{1}(\mathrm{x}), \varphi_{2}(\mathrm{x}), \ldots, \varphi_{1}(\mathrm{x})\right\}$
- w: the weight vector $\left\{w_{1}, w_{2}, \ldots, w_{1}\right\}$
- y : the prediction, +1 if " $y e s ",-1$ if "no"
- ($\operatorname{sign}(v)$ is +1 if $v>=0,-1$ otherwise)

The Perceptron:

a "machine" to calculate a weighted sum

The Perceptron:

Geometric interpretation

The Perceptron:

Geometric interpretation

Limitation of perceptron

- can only find linear separations between positive and negative examples

X $\quad 0$
$0 \quad X$

Neural Networks

- Connect together multiple perceptrons

- Motivation: Can represent non-linear functions!

Neural Networks: key terms

- Input (aka features)

- Output
- Nodes
- Layers
- Hidden layers
- Activation function (non-linear)
- Multi-layer perceptron

Example

- Create two classifiers

Example

- These classifiers map to a new space

Example

- In new space, the examples are linearly separable!

Example wrap-up:
 Forward propagation

- The final net

Softmax Function for multiclass classification

. Sigmoid function for multiple classes

$$
P(y \mid x)=\frac{e^{\mathbf{W} \cdot \phi(x, y)}}{\sum_{\tilde{y}} e^{\mathbf{W} \cdot \phi(x, \tilde{y})}} \longleftarrow \text { Current class }
$$

. Can be expressed using matrix/vector ops

$$
\begin{aligned}
\mathbf{r} & =\exp (\mathbf{W} \cdot \phi(x, y)) \\
\mathbf{p} & =\mathbf{r} / \sum_{\tilde{r} \in \mathbf{r}} \tilde{r}
\end{aligned}
$$

Stochastic Gradient Descent

Online training algorithm for probabilistic models

```
w = 0
for / iterations
    for each labeled pair }x,y\mathrm{ in the data
    w+= \alpha* dP(y | x)/dw
```

In other words

- For every training example, calculate the gradient (the direction that will increase the probability of y)
- Move in that direction, multiplied by learning rate α

Gradient of the Sigmoid Function

Take the derivative of the probability

$$
\begin{aligned}
\frac{d}{d w} P(y=1 \mid x) & =\frac{d}{d w} \frac{e^{\mathbf{w} \cdot \phi(x)}}{1+e^{\mathbf{w} \cdot \phi(x)}} \\
& =\phi(x) \frac{e^{\mathbf{w} \cdot \phi(x)}}{\left(1+e^{\mathbf{w} \cdot \phi(x)}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d w} P(y=-1 \mid x) & =\frac{d}{d w}\left(1-\frac{e^{\mathbf{w} \cdot \phi(x)}}{1+e^{\mathbf{w} \cdot \phi(x)}}\right) \\
& =-\phi(x) \frac{e^{\mathbf{w} \cdot \phi(x)}}{\left(1+e^{\mathbf{w} \cdot \phi(x)}\right)^{2}}
\end{aligned}
$$

Learning: We Don't Know the Derivative for Hidden Units!

For NNs, only know correct tag for last layer

$$
\mathbf{h}(x)
$$

Answer: Back-Propagation

Calculate derivative with chain rule

$$
\begin{gathered}
\frac{d P(y=1 \mid x)}{d \mathbf{w}_{\mathbf{1}}}=\frac{d P(y=1 \mid x)}{d \mathbf{w}_{4} \mathbf{h}(\mathbf{x})} \frac{d \mathbf{w}_{4} \mathbf{h}(\mathbf{x})}{d h_{1}(\mathbf{x})} \frac{d h_{1}(\mathbf{x})}{d \mathbf{w}_{\mathbf{1}}} \\
\downarrow \\
\frac{e^{\mathbf{w}_{4} \cdot \mathbf{h}(x)}}{\left(1+e^{\mathbf{w}_{4} \cdot \mathbf{h}(x)}\right)^{2}} \\
\downarrow \\
\text { Error of } \quad w_{1,4} \\
\text { next unit }\left(\delta_{4}\right) \quad \text { Weight } \quad \text { Gradient of } \\
\downarrow \\
\text { this unit }
\end{gathered}
$$

In General
Calculate i based

$$
\frac{d P(y=1 \mid \mathbf{x})}{\mathbf{w}_{\mathbf{i}}}=\frac{d h_{i}(\mathbf{x})}{d \mathbf{w}_{\mathbf{i}}} \sum_{j} \delta_{j} w_{i, j}
$$ on next units j :

Backpropagation $=$

Gradient descent
$+$
Chain rule

Feed Forward Neural Nets

All connections point forward

It is a directed acyclic graph (DAG)

Neural Networks

- Non-linear classification
- Prediction: forward propagation
- Vector/matrix operations + non-linearities
- Training: backpropagation + stochastic gradient descent

For more details, see CIML Chap 7

