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Logistic Regression



Perceptron & Probabilities

* What if we want a probability p(y|x)?

* The perceptron gives us a predictiony
* Let’s illustrate this with binary classification

In other words:

p(yIx)

P(y=1|x)=1 if w-p(x)=0
P(y=1]x)=0 if w-(x)<0

lllustrations: Graham Neubig



The logistic function

X: the input
¢(x): vector of feature functions {¢_(x), @,(x), ..., ¢ ,(X)}

w: the weight vector {w , w, ..., w}

y: the prediction, +1 if “yes”, -1 if “no”

p(yIx)

P(y=1[x)=
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» “Softer” function than in perceptron
e Can account for uncertainty

e Differentiable

Logistic Function

w*phi(x)



Logistic regression: how to train?

* Train based on conditional likelihood

* Find parameters w that maximize conditional likelihood of all answers
given examples x;

W =argmax HI,P(y,-\x,-;w)



Stochastic gradient ascent
(or descent)

* Online training algorithm for logistic regression
* and other probabilistic models

create map w
for | iterations
for each labeled pair x, y in the data
w +=a * dP(y|x)/dw

 Update weights for every training example

« Move in direction given by gradient
* Size of update step scaled by learning rate




Gradient of the logistic function
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Example: Person/not-person classification problem

Given

predict

Given Predict

Gonso was a Sanron sect priest (754-827) '
in the late Nara and early Heian periods. > YES!

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru » NoOI
City, Kyoto Prefecture.



Example: initial update

e Set a=1, initialize w=0

X = A site , located in Maizuru , Kyoto y=-1
0

d e
w-(x)=0 P (y=—1lx) = - e (x)
= —0.25¢(x)
\/
wéew+—0.25¢ (x)
\/
Wunigram “Maizuru” =-0.25 unigram “A” =-0.25
Wunigram “n =-0.5 . e = -0.25
W ” - .0.25 unigram “site _ 005
Wumgram N — .0.25 unigram “located” '

unigram “Kyoto”



Example: second update

X = Shoken , monk born in Kyoto y=1
-0.5 -0.25 -0.25
\ AAd 1
e
wp(x)=—1 -SP(y=1x) = ®(x)
dw (1+e€')°
= 0.196¢(x)
\J
wéew+0.196 @ x)
\/
Wunigram “Maizuru” =-0.25 : o =-0.25 w ) o= 0.196
unigram “A unigram “Shoken
Wunigram “ =-0.304 . e =-0.25 w ) = 0.196
' _ unigram “site unigram “monk
Wunigram “in” =-0.054 : . - =-0.25 w s = 0.196
_ unigram “located unigram “born
W =-0.054

unigram “Kyoto”



How to set the learning rate?

* Various strategies
e decay over time

Number of

Parameter samples

* Use held-out test set, increase learning rate when likelihood increases



Multiclass version




Some models are
better then others...

* Consider these 2 examples

-1 he saw a bird in the park
+1 he saw a robbery in the park

* Which of the 2 models below is better?

Classifier 1 Classifier 2
he +3 bird -1 Classifier 2 will probably
saw -5 robbery +1 generalize better!
a +0.5 ! .

: It does not include irrelevant
bird -1 : _
robbery +1 information
in +5 => Smaller model is better
the -3

park -2



Regularization

* A penalty on adding extra weights

* L2 regularization: [lwl]l,
* big penalty on large weights
e small penalty on small weights

* L1 regularization: llwlls
* Uniform increase when large or small
* Will cause many weights to become zero

R N W B~ O

—L2
—L1



L1 regularization in online learning

update_weights(w, phi, y, c)

v for name, value in w:

* if abs(value)<c: < [fabs.value<cg,

* winamel = 0 set weight to zero

* else: _ _ If value > 0,

* w[name] -= sign(value) * c,  decrease by c
for name, value in phi: If value <0,

wlnhame] += value * y increase by c



What you should know

e Standard supervised learning set-up for text classification
e Difference between train vs. test data
e How to evaluate

* 3 examples of supervised linear classifiers

* Naive Bayes, Perceptron, Logistic Regression

* Learning as optimization: what is the objective function optimized?
Difference between generative vs. discriminative classifiers
Smoothing, regularization
Overfitting, underfitting



Neural networks



Person/not-person classification problem

Given

predict

Given Predict

Gonso was a Sanron sect priest (754-827) '
in the late Nara and early Heian periods. > YES!

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru » NoOI
City, Kyoto Prefecture.



Formalizing binary prediction

sign (w-@(x))

I

sign( l.zlwi'cpi(x))

=
|

* X: the input
» (x): vector of feature functions {@ (x), @_(X), ..., ® (X)}

. w: the weight vector {w_, w_, ..., w}

 y: the prediction, +1 if “yes”, -1 if “n0”
* (sign(v) is +1if v >= 0, -1 otherwise)



The Perceptron:

a “machine” to calculate a weighted sum

gpr =1
Pesgite” =1
Petocated” ~ 1
OMaizure”™ 1
(P“,” =

Pripr =1
Pkyoter = 1
(P“priest” =0

Deplack” =

I




The Perceptron:
Geometric interpretation



The Perceptron:
Geometric interpretation



Limitation of perceptron

. can only find linear separations between positive and
negative examples



Neural Networks

. Connect together multiple perceptrons

(p“Site”

. Motivation: Can represent non-linear functions!



Neural Networks: key terms

* Input (aka features)

Pepr = * Output
Pesiter = 1 {1 * Nodes
(P“located”:1 X ® LayerS

(P“Maizuru”: 1 A

* Hidden layers

_ A -1
- R * Activation function
Poir = '
’ . (non-linear)
“Kyoto” /f
Qpriest> — 0 /&1

(P“black” = O

* Multi-layer perceptron



Example

. Create two classifiers

(P()(Xl) - {'19 1} (Po(X2) = {19 1}
®o[1]

X O
X\ 0,01
O

X

(P()(X3) = {'19 '1} (Po(X4) = {19 '1}

sign|

sign




Example

. These classifiers map to a new space

Po(x1) = -1, 1} @i(x0) = {1, 1§ ¢,(x3) = {-1, 1}

X&< 0]

O X O

=41, - . ¢, (x)={-1,-1}  0,(x)={l,-1}
0o(x3) = {-1, -1} 0,(x4) = {1, -1} (Pi(x4)={—1,-1} |

I = ,[0]

¢,[1]

¢1[0]

-1 %(Pl[l]




Example

. In new space, the examples are linearly separable!

Po(x1) = -1, 1} ¢y(x) = {1, 1}

x ol g
\g 9ol0] 1
L 0,[0] =y
0) X
0(X3) = -1, -1} 9 (x4) = {1, -1} /

¢,[1]
k o] @=L O T
- K 0,10
1 s f1 = {-1,-1
1o ll] @)=ty 0 o= (1.1

(Pl(X4) - {'19 '1}




Example wrap-up:
Forward propagation

. The final net

|
| >

tanh
-1

tanh




Softmax Function
for multiclass classification

. Sigmoid function for multiple classes

eW ®(x,y) <€ Current class

Z ~ er)(X,j?)

Y <— Sum of other classes

P(ylx)=

. Can be expressed using matrix/vector ops

r = exp(W - Pp(x, y))

p = r/z F
TEr



Stochastic Gradient Descent

Online training algorithm for probabilistic models

w=0
for / iterations
for each labeled pair x, y in the data
w +=a * dP(y|x)/dw

In other words

- For every training example, calculate the gradient
(the direction that will increase the probability of y)

- Move in that direction, multiplied by learning rate a



Gradient of the Sigmoid Function

Take the derivative of the probability

d eW'(I)(X)

d
Ep(y =11x) = dw 1+ ew o&)

ew-d)(x)

(14 ew )2

= ¢(x)

d eW'(I)(X)

d
—P(y=-1 = —[1-

(1 + ew )2

=~




_earning: We Don't Know the Derivative for
Hidden Units!

For NNs, only know correct tag for last layer

h(x)
dP(y =11x) _ R
dW1 o
dP(y =11x) eWah(x)
AT = h(x) (14 eWs h(x))z
w,
(I)(X) N| y:l
dP(y =11x) _
dWZ B
dP(y =11x) _




Answer: Back-Propagation

Calculate derivative with chain rule

dP(y=11x) dP(y=11x)dwsh(x)dh;(x)

dw, ~ dwsh(x)  dhi(x)  dwy
v \
ew4-h(x)
(1 + ewah(x))2 e
| | |
Error of Weight Gradient of
next unit (0,) this unit
In General dP(y=11%) _ dhi(x)z 5w,
Calculate i based Wi dwi £j

on next units J:



Backpropagation

Gradient descent
.|.

Chain rule



Feed Forward Neural Nets

All connections point forward

b (x)

It is a directed acyclic graph (DAG)



Neural Networks

* Non-linear classification

* Prediction: forward propagation
* Vector/matrix operations + non-linearities

* Training: backpropagation + stochastic gradient descent

For more details, see CIML Chap 7




