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Dan Jurafsky

Sparse versus dense vectors

* PPMI vectors are
e long (length |V|= 20,000 to 50,000)
e sparse (most elements are zero)

e Alternative: learn vectors which are
e short (length 200-1000)

e dense (most elements are non-zero)



Dan Jurafsky

Sparse versus dense vectors

e Why dense vectors?

e Short vectors may be easier to use as features in machine
learning (less weights to tune)

 Dense vectors may generalize better than storing explicit counts
e They may do better at capturing synonymy:

e car and automobile are synonyms; but are represented as
distinct dimensions; this fails to capture similarity between a

word with car as a neighbor and a word with automobile as a
neighbor



Dan Jurafsky

Three methods for getting short dense
vectors

e Singular Value Decomposition (SVD)
e A special case of this is called LSA — Latent Semantic Analysis

I” .

e “Neural Language Model”-inspired predictive models

e skip-grams and CBOW
* Brown clustering
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Dan Jurafsky

Intuition

e Approximate an N-dimensional dataset using fewer dimensions
e By first rotating the axes into a new space

* |n which the highest order dimension captures the most
variance in the original dataset

* And the next dimension captures the next most variance, etc.

e Many such (related) methods:
e PCA - principle components analysis

e Factor Analysis
e SVD
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Dimensipnality reduction

5

PCA dimension 1

PCA dimension 2 O
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Singular Value Decomposition

Any rectangular w x ¢ matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a
dimension in a new latent space, such that
* M column vectors are orthogonal to each other
* Columns are ordered by the amount of variance in the dataset each new
dimension accounts for
S: diagonal m x m matrix of singular values expressing the
importance of each dimension.

C: columns corresponding to original but m rows corresponding to
singular values
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Singular Value Decomposition

Contexts
o < —
% | ‘S“ i c
ol X |=|W )
=
\ J mxm mMXZC

W X C w Xm

9 Landuaer and Dumais 1997
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10

SVD applied to term-document matrix:
Latent Semantic AnalysiS  peerwester et al (1988)

If instead of keeping all m dimensions, we just keep the top k
singular values. Let’s say 300.

The result is a least-squares approximation to the original X

But instead of multiplying, Contexts
we’ll just make use of W. X o
n S
Each row of W: 'g x |=|w 7
e A k-dimensional vector = b x b hx e
e Representing word W |k ok Kk
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LSA more details

e 300 dimensions are commonly used
e The cells are commonly weighted by a product of two weights

e Local weight: Log term frequency
 Global weight: either idf or an entropy measure

11



Dan Jurafsky

Let’s return to PPMI word-word matrices

e Can we apply to SVD to them?

12



Dan Jurafsky

Vx|V

13

Vx|V

O1 0O O

0 02) 0

0 O O3

0 0 0 ..
Vx|V

. Oy

SVD applied to term-term matrix

Vx|V

(I'm simplifying here by assuming the matrix has rank |V|)
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Truncated SVD on term-term matrix

) ) ] 1o 0 O O_[ C
0 oo O 0 kx V]

Vx|V V| xk kx k

14
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Truncated SVD produces embeddings

e Each row of W matrix is a k-dimensional embedding T ]
representation of each word w fog I e — —
word |
e K mightrange from 50 to 1000 W

* Generally we keep the top k dimensions,
but some experiments suggest that
getting rid of the top 1 dimension or even _|V\ <k
the top 50 dimensions is helpful (Lapesa
and Evert 2014).

15



Dan Jurafsky

Embeddings versus sparse vectors

e Dense SVD embeddings sometimes work better than
sparse PPMI matrices at tasks like word similarity

 Denoising: low-order dimensions may represent unimportant
information

 Truncation may help the models generalize better to unseen data.

e Having a smaller number of dimensions may make it easier for
classifiers to properly weight the dimensions for the task.

e Dense models may do better at capturing higher order co-

P occurrence.
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Vector Semantics

Embeddings inspired by
neural language models:
skip-grams and CBOW



sy Prediction-pased models:
725} An alternative way to get dense vectors

e Skip-gram (Mikolov et al. 2013a) CBOW (Mikolov et al. 2013b)
e Learn embeddings as part of the process of word prediction.
* Train a neural network to predict neighboring words

 |nspired by neural net language models.
* |nsodoing, learn dense embeddings for the words in the training corpus.

e Advantages:

e Fast, easy to train (much faster than SVD)
e Available online in the word2vec package
1s *® Including sets of pretrained embeddings!
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Skip-grams

 Predict each neighboring word

* in a context window of 2C words

e from the current word.

* Sofor C=2, we are given word w; and predicting these
4 words:

[Wl‘—27 We—1,Wri1, Wt—I—Z]

19
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Skip-grams learn 2 embeddings
for each w

input embedding v, in the input matrix W

e Column i of the input matrix Wisthe 1 X d
embedding v; for word i in the vocabulary.

output embedding v/, in output matrix W’

e Row jof the output matrix W'isad X 1
vector embedding v'; for word i in the
vocabulary.

20
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Dan Jurafsky

e Walking through corpus pointing at word w(t), whose index in
the vocabulary is j, so we’ll call it W (1<j<|V]).

e Let’s predict w(t+1), whose index in the vocabulary is k (1 < k <
|V [). Hence our task is to compute P(w/| wj).

21
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Intuition: similarity as dot-product
between a target vector and context vector

W C

target embeddings context embeddings
target embedding .---"7"- ~
for word i Rt R 1... ... d

b 1.2, e, IV,
’ 1

1 .

Similarity( j , k) - k(e 0 00)
d Z
A

e, e—————

context embedding
for word k

22
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Similarity is computed from dot product

e Remember: two vectors are similar if they have a high
dot product
e Cosine is just a normalized dot product

* So:
e Similarity(j,k) ©c Ck " Vj
e We'll need to normalize to get a probability

23
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Turning dot products into probabilities

e Similarity(J,k) = ¢, - Vi

 We use softmax to turn into probabilities

exp(cy-v;)
ic|V| exp(ci-vj)

p(wrlw;j) = >

24



Dan Jurafsky

Embeddings from W and W’

 Since we have two embeddings, V; and C; for each word Wi

e We can either:

* Justusey,
e Sumthem
e Concatenate them to make a double-length embedding

25
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Learning

e Start with some initial embeddings (e.g., random)
e jteratively make the embeddings for a word

e more like the embeddings of its neighbors
e |ess like the embeddings of other words.

26
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Visualizing W and C as a network for doing
error backprop

Input layer Projection layer Outpu.t. l.ayer
probabilities of
1-hot input vector embedding for w; context words
X1 ?  .
X, @) ,. : zl
° (@) 2
Wt x W X -
R Vixd . C ax)v] oy, Wi+l
: ,-‘; : .
Xvi@_ —— 8 o
x|V Ixd IX[V

27



Dan Jurafsky

One-hot vectors

e A vector of length |V]

e 1 forthe target word and O for other words
e Soif “popsicle” is vocabulary word 5

e The one-hot vector is

e [0,0,0,0,1,0,0,0,0.......0]

Wo W1 Wi Wivi

coo0000..000010O0O0O0O0...00O00O0

28
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Skip-gram

o =Ch

h = Vj Ok - Ckh
Ok — Ck'Vj
Input layer Projection layer Outpu.t. l.ayer
. probabilities of
1-hot mput vector embedding for Wy context words
X (@ —
X |@ o : i’]l
. O >
B Vixd . C axv] oy, Vttl
5 e o E
Xivi @ . — — 8 v
1xd M
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Problem with the softamx

e The denominator: have to compute over every word in vocab

exp(cx-vi)
ic|v| exp(ci- V)

 |nstead: just sample a few of those negative words

30
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Goal in learning

e Make the word like the context words

|
lemon, a [tablespoon of apricot preserves or] jam G(x) — X
1+e
cl c2 W c3 c4
e We want this to be high:
o(cl-w)+o(c2-w)+0o(c3-w)+ o(cd-w)
e And not like k randomly selected “noise words”
[cement metaphysical dear coaxial apricot attendant whence forever puddle]
nl n2 n3 n4 nb5 no n7/ ng

e We want this to be low:

P 8

31 cnl-w)+on2-w)+...4+0o(n8-w)
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32

Skipgram with negative sampling:
Loss function

logo(c-w +Z Cypimop(w) 10€ 0 (—

l_
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33

Relation between skipgrams and PMI!

If we multiply WwW’’
We get a |V |x|V| matrix M, each entry wr corresponding to
some association between input word i and output word j

Levy and Goldberg (2014b) show that skip-gram reaches its
optimum just when this matrix is a shifted version of PMI:

WW'T=MPM! _|og k

So skip-gram is implicitly factoring a shifted version of the PMI
matrix into the two embedding matrices.
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Properties of embeddings

e Nearest words to some embeddings (Mikolov et al. 20131)

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint  capitulation
Redmond Washington  president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship  taggers capitulating

34
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vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

QUEENS

UNCLE PR \

QUEEN QUEEN

7 7

KING KING

35



Cross-lingual Embeddings

e Skip-gram allows us learning embeddings for words in a single
language

law world

_ market
Vectors in L1

A life

|
> children
war

country

|

(000009

(00000
(00000
(000009

money

beace energy

Slides courtesy Shyam Upadhyay



Cross-lingual Embeddings

e Skip-gram allows us learning embeddings for words in a single

language

 But what if we want to work with multiple languages?

Vectors in L1

—_ —J —J
,—,—,—,—‘
—_—

\ J
|

Vectors in L2

monde
law world
loi marke
marche
life
vie
enfants
children
warguerre
country
pays
argent
money

energy
peace
paix

energie

Slides courtesy Shyam Upadhyay



General Schema for Cross-lingual Embeddings

Vectors in L1

Initial embedding (Optional) 1
W S —
'@ @@ @
Q o o @
o o o @
o @ o @
- . N s . N o @ 9 ©

Cross-lingual Cross-lingual
Supervision —> Word Vector o @ (o @
Q @

L L1 and L2 y _ Model ) : :::
o o o @
o 9 @@
Initial embedding (Optional) (]

Vv Y

Vectors in L2

Slides courtesy Shyam Upadhyay



General Schema for Cross-lingual Embeddings

Vectors in L1

Initial embedding (Optional) 1
W S —
'@ @ @ @
Q @ |0 |@
Q (@ |0 @
Q @ |0 @
- . N - . N 9 @ @ ©
Cross-lingual Cross-lingual
Supervision Word Vector o © 6 ®
_ L1 and L2 y _ Model ) : : : :
o o @@
o @ @ @
Initial embedding (Optional) (]
Vv |

Vectors in L2

Slides courtesy Shyam Upadhyay



Sources of Cross-Lingual Supervision

[Je] { t’ aime
[ | ] [Iove You‘

word + sentence

Decreasing Cost >

[ ot aime ] (You, t) [Bonjour! IJe t aime]
[ | I ] (Love, aime) Hello! How are
| love you | you? | love you
(I, je)
sentence Word document

Slides courtesy Shyam Upadhyay



BiSparse - Sparse Bilingual Embeddings

* A method to learn embeddings, that are
> Bilingual
o Sparse
Non-negative
e Starting from
Monolingual embeddings in two languages

> A “seed” dictionary



BiSparse

e Method based on matrix factorization

0

/

Monolingual
corpus statistics

R

Cross-lingual
knowledge

3

f




BiSparse

e Method based on matrix factorization

Cross-lingual
knowledge

Monolingual
corpus statistics

R

— Xeill3 + Ael|Aeill1



BiSparse

e Method based on matrix factorization

v
<1
—— 3" JJJAeiDeT — Xoil3 + Ael| Al

Monolingual Cross-lingual
corpus statistics knowledge

vf
— 1 T
> 5llAeDs" = Xejll3 + AsllAgllx

J=1




BiSparse

e Method based on matrix factorization

Monolingual
corpus statistics

vf
1 T
— D 5D = Xejlls + AsllAg]la

j=i




Building the S Matrix

chien

e nuit —> night 0

0
° dog —> chien > dog 0O 0. 1 O 0.

e cake —> gateau 0




Interpreting Embeddings

French Dimensions English Dimensions
logiciel, fichiers, web, microsoft files, web, microsoft, www
université, college, lycée, conseil de administration | university, college, graduate, faculty
virus informatique, virus, infection, cellules virus, viruses, infection, cells
doigts, genoux, jambes, muscles bruises, fingers, toes, knees
budapest, stockholm, copenhague, buenos lahore, dhaka, harare, karachi




Summary

e \ector Semantics with Dense Vectors
e Singular Value Decomposition
e Skip-gram embeddings

e Cross-lingual embeddings

* BiSparse model



