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Sparse'versus'dense'vectors

• PPMI%vectors%are
• long (length%|V|=%20,000%to%50,000)
• sparse'(most%elements%are%zero)

• Alternative:%learn%vectors%which%are
• short (length%200F1000)
• dense (most%elements%are%nonFzero)
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Sparse'versus'dense'vectors

• Why%dense%vectors?
• Short%vectors%may%be%easier%to%use%as%features%in%machine%
learning%(less%weights%to%tune)

• Dense%vectors%may%generalize%better%than%storing%explicit%counts
• They%may%do%better%at%capturing%synonymy:
• car and%automobile are%synonyms;%but%are%represented%as%
distinct%dimensions;%this%fails%to%capture%similarity%between%a%
word%with%car as%a%neighbor%and%a%word%with%automobile as%a%
neighbor

3



Dan%Jurafsky

Three'methods'for'getting'short'dense'
vectors

• Singular%Value%Decomposition%(SVD)
• A%special%case%of%this%is%called%LSA%– Latent%Semantic%Analysis

• “Neural%Language%Model”Finspired%predictive%models
• skipFgrams%and%CBOW

• Brown%clustering
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Dense%Vectors%via%SVD
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Intuition
• Approximate%an%NFdimensional%dataset%using%fewer%dimensions
• By%first%rotating%the%axes%into%a%new%space
• In%which%the%highest%order%dimension%captures%the%most%

variance%in%the%original%dataset
• And%the%next%dimension%captures%the%next%most%variance,%etc.
• Many%such%(related)%methods:

• PCA%– principle%components%analysis
• Factor%Analysis
• SVD
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Singular'Value'Decomposition

8

Any/rectangular/w/x/c/matrix/X/equals/the/product/of/3/matrices:
W:%rows%corresponding%to%original%but%m%columns%represents%a%
dimension%in%a%new%latent%space,%such%that%

• M%column%vectors%are%orthogonal%to%each%other
• Columns%are%ordered%by%the%amount%of%variance%in%the%dataset%each%new%
dimension%accounts%for

S:%%diagonal%m x%mmatrix%of%singular'values'expressing%the%
importance%of%each%dimension.
C:%columns%corresponding%to%original%but%m%rows%corresponding%to%
singular%values
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Singular'Value'Decomposition
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 
m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 

9 Landuaer and%Dumais 1997



Dan%Jurafsky

SVD'applied'to'term<document'matrix:
Latent'Semantic'Analysis

• If%instead%of%keeping%all%m%dimensions,%we%just%keep%the%top%k%
singular%values.%Let’s%say%300.

• The%result%is%a%leastFsquares%approximation%to%the%original%X
• But%instead%of%multiplying,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

we’ll%just%make%use%of%W.
• Each%row%of%W:

• A%kFdimensional%vector
• Representing%word%W

10
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for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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LSA'more'details

• 300%dimensions%are%commonly%used
• The%cells%are%commonly%weighted%by%a%product%of%two%weights

• Local%weight:%%Log%term%frequency
• Global%weight:%either%idf or%an%entropy%measure
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Let’s'return'to'PPMI'word<word'matrices

• Can%we%apply%to%SVD%to%them?

12
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SVD'applied'to'term<term'matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

13 (I’m%simplifying%here%by%assuming%the%matrix%has%rank%|V|)
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Truncated'SVD'on'term<term'matrix

19.3 • DENSE VECTORS AND SVD 13
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for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ |V |

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sV

3

777775

|V |⇥ |V |

2

666664
C

3

777775

|V |⇥ |V |

Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ k

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sk

3

777775

k⇥ k

h
C

i

k⇥ |V |

Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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Truncated'SVD'produces'embeddings

15

• Each%row%of%W%matrix%is%a%kFdimensional%
representation%of%each%word%w

• K%might%range%from%50%to%1000
• Generally%we%keep%the%top%k%dimensions,%

but%some%experiments%suggest%that%
getting%rid%of%the%top%1%dimension%or%%even%
the%top%50%dimensions%is%helpful%(Lapesa
and%Evert%2014).
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By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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Embeddings versus'sparse'vectors

• Dense%SVD%embeddings sometimes%work%better%than%
sparse%PPMI%matrices%at%tasks%like%word%similarity
• Denoising:%lowForder%dimensions%may%represent%unimportant%
information

• Truncation%may%help%the%models%generalize%better%to%unseen%data.
• Having%a%smaller%number%of%dimensions%may%make%it%easier%for%
classifiers%to%properly%weight%the%dimensions%for%the%task.

• Dense%models%may%do%better%at%capturing%higher%order%coF
occurrence.%

16
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Embeddings inspired%by%
neural%language%models:%
skipFgrams%and%CBOW



Dan%Jurafsky Prediction<based'models:
An'alternative'way'to'get'dense'vectors

• Skip<gram (Mikolov et%al.%2013a)%%CBOW (Mikolov et%al.%2013b)
• Learn%embeddings as%part%of%the%process%of%word%prediction.
• Train%a%neural%network%to%predict%neighboring%words
• Inspired%by%neural'net'language'models.
• In%so%doing,%learn%dense%embeddings for%the%words%in%the%training%corpus.

• Advantages:
• Fast,%easy%to%train%(much%faster%than%SVD)
• Available%online%in%the%word2vec package
• Including%sets%of%pretrained embeddings!18
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Skip<grams

• Predict%each%neighboring%word%
• in%a%context%window%of%2C/words%
• from%the%current%word.%

• So%for%C=2,%we%are%given%word%wt and%predicting%these%
4%words:
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This method is sometimes called truncated SVD. SVD is parameterized by k,truncated SVD
the number of dimensions in the representation for each word, typically ranging
from 500 to 1000. Usually, these are the highest-order dimensions, although for
some tasks, it seems to help to actually throw out a small number of the most high-
order dimensions, such as the first 50 (Lapesa and Evert, 2014).

The dense embeddings produced by SVD sometimes perform better than the
raw PPMI matrices on semantic tasks like word similarity. Various aspects of the
dimensionality reduction seem to be contributing to the increased performance. If
low-order dimensions represent unimportant information, the truncated SVD may be
acting to removing noise. By removing parameters, the truncation may also help the
models generalize better to unseen data. When using vectors in NLP tasks, having
a smaller number of dimensions may make it easier for machine learning classifiers
to properly weight the dimensions for the task. And the models may do better at
capturing higher order co-occurrence.

Nonetheless, there is a significant computational cost for the SVD for a large co-
occurrence matrix, and performance is not always better than using the full sparse
PPMI vectors, so for some applications the sparse vectors are the right approach.
Alternatively, the neural embeddings we discuss in the next section provide a popular
efficient solution to generating dense embeddings.

19.4 Embeddings from prediction: Skip-gram and CBOW

An alternative to applying dimensionality reduction techniques like SVD to co-
occurrence matrices is to apply methods that learn embeddings for words as part
of the process of word prediction. Two methods for generating dense embeddings,
skip-gram and CBOW (continuous bag of words) (Mikolov et al. 2013, Mikolovskip-gram

CBOW et al. 2013a), draw inspiration from the neural methods for language modeling intro-
duced in Chapter 5. Like the neural language models, these models train a network
to predict neighboring words, and while doing so learn dense embeddings for the
words in the training corpus. The advantage of these methods is that they are fast,
efficient to train, and easily available online in the word2vec package; code and
pretrained embeddings are both available.

We’ll begin with the skip-gram model. The skip-gram model predicts each
neighboring word in a context window of 2C words from the current word. So
for a context window C = 2 the context is [wt�2,wt�1,wt+1,wt+2] and we are pre-
dicting each of these from word wt . Fig. 17.12 sketches the architecture for a sample
context C = 1.

The skip-gram model actually learns two d-dimensional embeddings for each
word w: the input embedding v and the output embedding v0. These embeddingsinput

embedding
output

embedding are encoded in two matrices, the input matrix W and the output matrix W 0. Each
column i of the input matrix W is the 1⇥ d vector embedding vi for word i in the
vocabulary. Each row i of the output matrix W 0 is a d ⇥ 1 vector embedding v0i for
word i in the vocabulary

Let’s consider the prediction task. We are walking through a corpus of length T
and currently pointing at the tth word w(t), whose index in the vocabulary is j, so
we’ll call it w j (1 < j < |V |). Let’s consider predicting one of the 2C context words,
for example w(t+1), whose index in the vocabulary is k (1 < k < |V |). Hence our task
is to compute P(wk|w j).
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Skip<grams'learn'2'embeddings
for'each'w

input'embedding'v,/in%the%input%matrix%W
• Column%i of%the%input%matrix%W/is%the%1�d/

embedding%vi for%word%i in%the%vocabulary.%

output'embedding'vl,%in%output%matrix%W’
• Row%i of%the%output%matrix%Wl%is%a%d/� 1%

vector%embedding%vli for%word%i in%the%
vocabulary.
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Setup

• Walking%through%corpus%pointing%at%word%w(t),%whose%index%in%
the%vocabulary%is%j,%so%we’ll%call%it%wj (1%<%j/<%|V/|).%

• Let’s%predict%w(t+1)%,%whose%index%in%the%vocabulary%is%k/(1%<%k/<%
|V/|).%Hence%our%task%is%to%compute%P(wk|wj).%
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Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector
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for word k
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Similarity'is'computed'from'dot'product

• Remember:%two%vectors%are%similar%if%they%have%a%high%
dot%product
• Cosine%is%just%a%normalized%dot%product

• So:
• Similarity(j,k) � ck o%vj

• We’ll%need%to%normalize%to%get%a%probability
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Turning'dot'products'into'probabilities

• Similarity(j,k) = ck · vj

• We%use%softmax to%turn%into%probabilities
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context words, for example w(t+1), whose index in the vocabulary is k (1 < k < |V |).
Hence our task is to compute P(wk|w j).

The heart of the skip-gram computation of the probability p(wk|w j) is computing
the dot product between the vectors for wk and w j, the context vector for wk and the
target vector for w j. We’ll represent this dot product as ck ·v j, where ck is the context
vector of word k and v j is the target vector for word j. As we saw in the previous
chapter, the higher the dot product between two vectors, the more similar they are.
(That was the intuition of using the cosine as a similarity metric, since cosine is just
a normalized dot product). Fig. 16.4 shows the intuition that the similarity function
requires selecting out a target vector v j from W , and a context vector ck from C.
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context embedding
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target embedding
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Figure 16.4

Of course, the dot product ck · v j is not a probability, it’s just a number ranging
from �• to •. We can use the softmax function from Chapter 7 to normalize the dot
product into probabilities. Computing this denominator requires computing the dot
product between each other word w in the vocabulary with the target word wi:

p(wk|w j) =
exp(ck · v j)P

i2|V | exp(ci · v j)
(16.1)

In summary, the skip-gram computes the probability p(wk|w j) by taking the dot
product between the word vector for j (v j) and the context vector for k (ck), and
turning this dot product v j · ck into a probability by passing it through a softmax
function.

This version of the algorithm, however, has a problem: the time it takes to com-
pute the denominator. For each word wt , the denominator requires computing the
dot product with all other words. As we’ll see in the next section, we generally solve
this by using an approximation of the denominator.

CBOW The CBOW (continuous bag of words) model is roughly the mirror im-
age of the skip-gram model. Like skip-grams, it is based on a predictive model,
but this time predicting the current word wt from the context window of 2L words
around it, e.g. for L = 2 the context is [wt�2,wt�1,wt+1,wt+2]

While CBOW and skip-gram are similar algorithms and produce similar embed-
dings, they do have slightly different behavior, and often one of them will turn out
to be the better choice for any particular task.

16.2.1 Learning the word and context embeddings
We already mentioned the intuition for learning the word embedding matrix W and
the context embedding matrix C: iteratively make the embeddings for a word more
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Embeddings from'W'and'W’

• Since%we%have%two%embeddings,%vj and%cj for%each%word%wj
• We%can%either:

• Just%use%vj
• Sum%them
• Concatenate%them%to%make%a%doubleFlength%embedding
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Learning

• Start%with%some%initial%embeddings (e.g.,%random)
• iteratively%make%the%embeddings for%a%word%

• more%like%the%embeddings of%its%neighbors%
• less%like%the%embeddings of%other%words.%
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Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer
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One<hot'vectors

• A%vector%of%length%|V|%
• 1%for%the%target%word%and%0%for%other%words
• So%if%“popsicle”%is%vocabulary%word%5
• The%one<hot'vector'is
• [0,0,0,0,1,0,0,0,0…….0]
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Problem'with'the'softamx

• The%denominator:%have%to%compute%over%every%word%in%vocab

• Instead:%just%sample%a%few%of%those%negative%words
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context words, for example w(t+1), whose index in the vocabulary is k (1 < k < |V |).
Hence our task is to compute P(wk|w j).

The heart of the skip-gram computation of the probability p(wk|w j) is computing
the dot product between the vectors for wk and w j, the context vector for wk and the
target vector for w j. We’ll represent this dot product as ck ·v j, where ck is the context
vector of word k and v j is the target vector for word j. As we saw in the previous
chapter, the higher the dot product between two vectors, the more similar they are.
(That was the intuition of using the cosine as a similarity metric, since cosine is just
a normalized dot product). Fig. 16.4 shows the intuition that the similarity function
requires selecting out a target vector v j from W , and a context vector ck from C.
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Of course, the dot product ck · v j is not a probability, it’s just a number ranging
from �• to •. We can use the softmax function from Chapter 7 to normalize the dot
product into probabilities. Computing this denominator requires computing the dot
product between each other word w in the vocabulary with the target word wi:

p(wk|w j) =
exp(ck · v j)P

i2|V | exp(ci · v j)
(16.1)

In summary, the skip-gram computes the probability p(wk|w j) by taking the dot
product between the word vector for j (v j) and the context vector for k (ck), and
turning this dot product v j · ck into a probability by passing it through a softmax
function.

This version of the algorithm, however, has a problem: the time it takes to com-
pute the denominator. For each word wt , the denominator requires computing the
dot product with all other words. As we’ll see in the next section, we generally solve
this by using an approximation of the denominator.

CBOW The CBOW (continuous bag of words) model is roughly the mirror im-
age of the skip-gram model. Like skip-grams, it is based on a predictive model,
but this time predicting the current word wt from the context window of 2L words
around it, e.g. for L = 2 the context is [wt�2,wt�1,wt+1,wt+2]

While CBOW and skip-gram are similar algorithms and produce similar embed-
dings, they do have slightly different behavior, and often one of them will turn out
to be the better choice for any particular task.

16.2.1 Learning the word and context embeddings
We already mentioned the intuition for learning the word embedding matrix W and
the context embedding matrix C: iteratively make the embeddings for a word more
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Goal'in'learning
• Make%the%word%like%the%context%words

• We%want%this%to%be%high:

• And%not%like%k randomly%selected%“noise%words”

• We%want%this%to%be%low:
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like the embeddings of its neighbors and less like the embeddings of other words.
In the version of the prediction algorithm suggested in the previous section, the

probability of a word is computed by normalizing the dot-product between a word
and each context word by the dot products for all words. This probability is opti-
mized when a word’s vector is closest to the words that occur near it (the numerator),
and further from every other word (the denominator). Such a version of the algo-
rithm is very expensive; we need to compute a whole lot of dot products to make the
denominator.

Instead, the most commonly used version of skip-gram, skip-gram with negative
sampling, approximates this full denominator.

This section offers a brief sketch of how this works. In the training phase, the
algorithm walks through the corpus, at each target word choosing the surrounding
context words as positive examples, and for each positive example also choosing k
noise samples or negative samples: non-neighbor words. The goal will be to movenegative

samples
the embeddings toward the neighbor words and away from the noise words.

For example, in walking through the example text below we come to the word
apricot, and let L = 2 so we have 4 context words c1 through c4:

lemon, a [tablespoon of apricot preserves or] jam

c1 c2 w c3 c4

The goal is to learn an embedding whose dot product with each context word
is high. In practice skip-gram uses a sigmoid function s of the dot product, where
s(x) = 1

1+ex . So for the above example we want s(c1 ·w)+s(c2 ·w)+s(c3 ·w)+
s(c4 ·w) to be high.

In addition, for each context word the algorithm chooses k noise words according
to their unigram frequency. If we let k = 2, for each target/context pair, we’ll have 2
noise words for each of the 4 context words:

[cement metaphysical dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 n5 n6 n7 n8

We’d like these noise words n to have a low dot-product with our target embed-
ding w; in other words we want s(n1 ·w)+s(n2 ·w)+ ...+s(n8 ·w) to be low.

More formally, the learning objective for one word/context pair (w,c) is

logs(c ·w)+
kX

i=1

Ewi⇠p(w) [logs(�wi ·w)] (16.2)

That is, we want to maximize the dot product of the word with the actual context
word, and minimize the dot products of the word with the k negative sampled non-
neighbor words. The noise words wi are sampled from the vocabulary V according
to their weighted unigram probability; in practice rather than p(w) it is common to
use the weighting p

3
4 (w).

The learning algorithm starts with randomly initialized W and C matrices, and
then walks through the training corpus moving W and C so as to maximize the objec-
tive in Eq. 16.2. An algorithm like stochastic gradient descent is used to iteratively
shift each value so as to maximize the objective, using error backpropagation to
propagate the gradient back through the network as described in Chapter 5 (Mikolov
et al., 2013a).

In summary, the learning objective in Eq. 16.2 is not the same as the p(wk|w j)
defined in Eq. 16.3. Nonetheless, although negative sampling is a different objective
than the probability objective, and so the resulting dot products will not produce
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s(x) = 1

1+ex . So for the above example we want s(c1 ·w)+s(c2 ·w)+s(c3 ·w)+
s(c4 ·w) to be high.

In addition, for each context word the algorithm chooses k noise words according
to their unigram frequency. If we let k = 2, for each target/context pair, we’ll have 2
noise words for each of the 4 context words:

[cement metaphysical dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 n5 n6 n7 n8

We’d like these noise words n to have a low dot-product with our target embed-
ding w; in other words we want s(n1 ·w)+s(n2 ·w)+ ...+s(n8 ·w) to be low.

More formally, the learning objective for one word/context pair (w,c) is

logs(c ·w)+
kX

i=1

Ewi⇠p(w) [logs(�wi ·w)] (16.2)

That is, we want to maximize the dot product of the word with the actual context
word, and minimize the dot products of the word with the k negative sampled non-
neighbor words. The noise words wi are sampled from the vocabulary V according
to their weighted unigram probability; in practice rather than p(w) it is common to
use the weighting p

3
4 (w).

The learning algorithm starts with randomly initialized W and C matrices, and
then walks through the training corpus moving W and C so as to maximize the objec-
tive in Eq. 16.2. An algorithm like stochastic gradient descent is used to iteratively
shift each value so as to maximize the objective, using error backpropagation to
propagate the gradient back through the network as described in Chapter 5 (Mikolov
et al., 2013a).

In summary, the learning objective in Eq. 16.2 is not the same as the p(wk|w j)
defined in Eq. 16.3. Nonetheless, although negative sampling is a different objective
than the probability objective, and so the resulting dot products will not produce
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Relation'between'skipgrams and'PMI!

• If%we%multiply%WW’T

• We%get%a%|V|x|V|%matrix%M ,%each%entry%mij corresponding%to%
some%association%between%input%word%i and%output%word%j/

• Levy%and%Goldberg%(2014b)%show%that%skipFgram%reaches%its%
optimum%just%when%this%matrix%is%a%shifted%version%of%PMI:

WWlT/=MPMI%−log%k/
• So%skipFgram%is%implicitly%factoring%a%shifted%version%of%the%PMI%

matrix%into%the%two%embedding%matrices.
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• Nearest%words%to%some%embeddings (Mikolov et%al.%20131)

18 CHAPTER 19 • VECTOR SEMANTICS

matrix is repeated between each one-hot input and the projection layer h. For the
case of C = 1, these two embeddings must be combined into the projection layer,
which is done by multiplying each one-hot context vector x by W to give us two
input vectors (let’s say vi and v j). We then average these vectors

h = W · 1
2C

X

�c jc, j 6=0

v( j) (19.31)

As with skip-grams, the the projection vector h is multiplied by the output matrix
W 0. The result o = W 0h is a 1⇥ |V | dimensional output vector giving a score for
each of the |V | words. In doing so, the element ok was computed by multiplying
h by the output embedding for word wk: ok = v0kh. Finally we normalize this score
vector, turning the score for each element ok into a probability by using the soft-max
function.

19.5 Properties of embeddings

We’ll discuss in Section 17.8 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 17.14 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 19.14 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 17.15 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property. We return in the next section to these
relational properties of embeddings and how they relate to meaning compositional-
ity: the way the meaning of a phrase is built up out of the meaning of the individual
vectors.

19.6 Compositionality in Vector Models of Meaning

To be written.
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Embeddings capture'relational'meaning!

vector(‘king’)%F vector(‘man’)%+%vector(‘woman’)% ≈"vector(‘queen’)
vector(‘Paris’)%F vector(‘France’)%+%vector(‘Italy’)%≈ vector(‘Rome’)
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Cross-lingual Embeddings
• Skip-gram allows us learning embeddings for words in a single 
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Cross-lingual Embeddings
• Skip-gram allows us learning embeddings for words in a single 

language


• But what if we want to work with multiple languages?

Vectors in L1 

Vectors in L2 

children 

enfants 

money 
argent 

loi 
law 

life 
vie 

monde 
world 

pays 
country 

war guerre 

peace 
paix 

energy 

energie 

market 
marche 
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General Schema for Cross-lingual Embeddings
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Sources of Cross-Lingual Supervision

Decreasing	Cost		

(You, t’) 
 

(Love, aime) 
 

(I, je) 
 

word 

Je	

I	

t’	 aime	

love	 You	

word + sentence 

BiSkip 
Luong et al. 15 

 

BiCVM 
Hermann et al. 14 

BiCCA 
Faruqui et al. 14 

BiVCD 
Vulic et al. 15 

Je	t’	aime	

I	love	you	

Bonjour!	Je	t’	aime	

Hello!	How	are	
you?	I	love	you	

sentence document 
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BiSparse - Sparse Bilingual Embeddings
• A method to learn embeddings, that are


Bilingual

Sparse

Non-negative


• Starting from 

Monolingual embeddings in two languages

A “seed” dictionary
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• Method based on matrix factorization
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Building the S Matrix

• …


• nuit —> night


• dog —> chien


• cake —> gateau


• …

dog[                                       ]                                       
chien

0 
.. 
0 
1 
.. 
.. 
0 

0   0  ..  0   0  ..  



Interpreting Embeddings



Summary

• Vector Semantics with Dense Vectors


• Singular Value Decomposition


• Skip-gram embeddings


• Cross-lingual embeddings


• BiSparse model


