POS tagging

CMSC 723 / LING 723 / INST 725

Marine Carpuat

Parts of Speech

- "Equivalence class" of linguistic entities
- "Categories" or "types" of words
- Study dates back to the ancient Greeks
- Dionysius Thrax of Alexandria (c. 100 BC)
- 8 parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, participle, article
- Remarkably enduring list!

How can we define POS?

- By meaning?
- Verbs are actions
- Adjectives are properties
- Nouns are things
- By the syntactic environment
- What occurs nearby?
- What does it act as?
- By what morphological processes affect it
- What affixes does it take?
- Typically combination of syntactic+morphology

Parts of Speech

- Open class

- Impossible to completely enumerate
- New words continuously being invented, borrowed, etc.
- Closed class
- Closed, fixed membership
- Reasonably easy to enumerate
- Generally, short function words that "structure" sentences

Open Class POS

- Four major open classes in English
- Nouns
- Verbs
- Adjectives
- Adverbs
- All languages have nouns and verbs... but may not have the other two

Nouns

- Open class
- New inventions all the time: muggle, webinar, ...
- Semantics:
- Generally, words for people, places, things
- But not always (bandwidth, energy, ...)
- Syntactic environment:
- Occurring with determiners
- Pluralizable, possessivizable
- Other characteristics:
- Mass vs. count nouns

Verbs

- Open class
- New inventions all the time: google, tweet, ...
- Semantics
- Generally, denote actions, processes, etc.
- Syntactic environment
- E.g., Intransitive, transitive
- Other characteristics
- Main vs. auxiliary verbs
- Gerunds (verbs behaving like nouns)
- Participles (verbs behaving like adjectives)

Adjectives and Adverbs

- Adjectives
- Generally modify nouns, e.g., tall girl
- Adverbs
- A semantic and formal hodge-podge...
- Sometimes modify verbs, e.g., sang beautifully
- Sometimes modify adjectives, e.g., extremely hot

Closed Class POS

- Prepositions
- In English, occurring before noun phrases
- Specifying some type of relation (spatial, temporal, ...)
- Examples: on the shelf, before noon
- Particles
- Resembles a preposition, but used with a verb ("phrasal verbs")
- Examples: find out, turn over, go on

Particle vs. Prepositions

He came by the office in a hurry He came by his fortune honestly

We ran up the phone bill We ran up the small hill

He lived down the block He never lived down the nicknames
(by = preposition) (by = particle)
(up = particle) (up = preposition)
(down = preposition) (down = particle)

More Closed Class POS

- Determiners
- Establish reference for a noun
- Examples: a, an, the (articles), that, this, many, such, ...
- Pronouns
- Refer to person or entities: he, she, it
- Possessive pronouns: his, her, its
- Wh-pronouns: what, who

Closed Class POS: Conjunctions

- Coordinating conjunctions
- Join two elements of "equal status"
- Examples: cats and dogs, salad or soup
- Subordinating conjunctions
- Join two elements of "unequal status"
- Examples: We'll leave after you finish eating. While I was waiting in line, I saw my friend.
- Complementizers are a special case: I think that you should finish your assignment

Beyond English...

Chinese

No verb/adjective distinction!

Riau Indonesian/Malay
No Articles
No Tense Marking
3rd person pronouns neutral to both gender and number No features distinguishing verbs from nouns

漂亮: beautiful/to be beautiful

Ayam (chicken) Makan (eat)
The chicken is eating The chicken ate
The chicken will eat
The chicken is being eaten
Where the chicken is eating
How the chicken is eating
Somebody is eating the chicken
The chicken that is eating

POS tagging

POS Tagging: What's the task?

- Process of assigning part-of-speech tags to words
- But what tags are we going to assign?
- Coarse grained: noun, verb, adjective, adverb, ...
- Fine grained: \{proper, common\} noun
- Even finer-grained: \{proper, common\} noun \pm animate
- Important issues to remember
- Choice of tags encodes certain distinctions/non-distinctions
- Tagsets will differ across languages!
- For English, Penn Treebank is the most common tagset

Penn Treebank Tagset: 45 Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, \{, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \}, >
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	; ... -
RP	particle	$u p$, off			

Penn Treebank Tagset: Choices

- Example:
- The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Distinctions and non-distinctions
- Prepositions and subordinating conjunctions are tagged "IN" ("Although/IN I/PRP..")
- Except the preposition/complementizer "to" is tagged "TO"

Why do POS tagging?

- One of the most basic NLP tasks
- Nicely illustrates principles of statistical NLP
- Useful for higher-level analysis
- Needed for syntactic analysis
- Needed for semantic analysis
- Sample applications that require POS tagging
- Machine translation
- Information extraction
- Lots more...

Try your hand at tagging...

- The back door
- On my back
- Win the voters back
- Promised to back the bill

Try your hand at tagging...

- I hope that she wins
- That day was nice
- You can go that far

Why is POS tagging hard?

- Ambiguity!

- Ambiguity in English
- 11.5% of word types ambiguous in Brown corpus
- 40% of word tokens ambiguous in Brown corpus
- Annotator disagreement in Penn Treebank: 3.5\%

POS tagging: how to do it?

- Given Penn Treebank, how would you build a system that can POS tag new text?
- Baseline: pick most frequent tag for each word type
- 90% accuracy if train+test sets are drawn from Penn Treebank
- Can we do better?

How to POS tag automatically?

How can we POS tag automatically?

- POS tagging as multiclass classification
- What is x ? What is y ?
- POS tagging as sequence labeling
- Models sequences of predictions

Linear Models for Classification

$$
\hat{y}=\arg \max _{y} \boldsymbol{\theta}^{\top} \mathbf{f}(\mathbf{x}, y)
$$

Weights

Multiclass perceptron

$$
\hat{y}=\arg \max _{y} \boldsymbol{\theta}^{\top} \mathbf{f}(\mathbf{x}, y)
$$

```
Algorithm 1 Perceptron learning algorithm
    1: procedure Perceptron (x (x:N},\mp@subsup{y}{1:N}{}
    2: repeat
    3: Select an instance }
    4: }\quad\hat{y}\leftarrow\operatorname{arg}\mp@subsup{\operatorname{max}}{y}{}\mp@subsup{\boldsymbol{0}}{t}{\top}\boldsymbol{f}(\mp@subsup{\boldsymbol{x}}{i}{},y
    5: if }\hat{y}\not=\mp@subsup{y}{i}{}\mathrm{ then
    6: }\quad\mp@subsup{\boldsymbol{0}}{t+1}{}\leftarrow\mp@subsup{\boldsymbol{0}}{t}{}+\boldsymbol{f}(\mp@subsup{\boldsymbol{x}}{i}{},\mp@subsup{y}{i}{})-\boldsymbol{f}(\mp@subsup{\boldsymbol{x}}{i}{},\hat{y}
    7: else
    8: do nothing
    9: until tired
```


POS tagging
 Sequence labeling with the perceptron

Sequence labeling problem

- Input:
- sequence of tokens $x=\left[x_{1} \ldots x_{k}\right]$
- Variable length K
- Output (aka label):
- sequence of tags $y=\left[y_{1} \ldots y_{k}\right]$
- Size of output space?

Structured Perceptron

- Perceptron algorithm can be used for sequence labeling
- But there are challenges
- How to compute argmax efficiently?
- What are appropriate features?
- Approach: leverage structure of output space

Feature functions for sequence labeling

$\boldsymbol{x}=$ " monsters eat tasty bunnies "
$\boldsymbol{y}=$ noun verb adj noun

- Example features?
- Number of times "monsters" is tagged as noun
- Number of times "noun" is followed by "verb"
- Number of times "tasty" is tagged as "verb"
- Number of times two verbs are adjacent
- ...

Feature functions for sequence labeling

$x=$ " monsters eat tasty bunnies "
$y=$ noun verb adj noun

- Standard features of POS tagging
- Unary features: \# times word w has been labeled with tag I for all words w and all tags I
- Markov features: \# times tag I is adjacent to tag l^{\prime} in output for all tags I and I'
- Size of feature representation is constant wrt input length

Solving the argmax problem for sequences

$\boldsymbol{x}=$ " monsters eat tasty bunnies "
$y=$ noun verb adj noun

- Efficient algorithms possible if the feature function decomposes over the input
- This holds for unary and markov features

Solving the argmax problem for sequences

- Trellis sequence labeling
- Any path represents a labeling of input sentence
- Gold standard path in red
- Each edge receives a weight such that adding weights along the path corresponds to score for input/ouput configuration
- Any max-weight max-weight path algorithm can find the argmax
- e.g. Viterbi algorithm O(LK²)

POS tagging

CMSC 723 / LING 723 / INST 725

Marine Carpuat

