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POS tagging
Sequence labeling with the perceptron

Sequence labeling problem Structured Perceptron
* Input: * Perceptron algorithm can be used for
* sequence of tokens x = [X; ... X,] sequence labeling

* Variable length L
e But there are challenges

e Output (aka label): * How to compute argmax efficiently?
* sequence of tagsy = [y; ... y,] * What are appropriate features?
* #tags=K
* Size of output space? * Approach: leverage structure of

output space



Solving the argmax problem for sequences
with dynamic programming

x = “ monsters eat tasty bunnies “

y:

noun verb adj

noun

e Efficient algorithms possible if
the feature function
decomposes over the input

* This holds for unary and markov
features used for POS tagging



Feature functions for sequence labeling

 Standard features of POS tagging

x = “ monsters eat tasty bunnies “

Yy = noun verb adj noun * Unary features: # times word w has been
labeled with tag | for all words w and all
tags |

* Markov features: # times tag | is adjacent
to tag |’ in output for all tags | and I’

» Size of feature representation is constant wrt
input length



Solving the argmax problem for sequences
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monsters eat tasty bunnies

* Trellis sequence labeling

* Any path represents a labeling of
input sentence

@ . * Gold standard path in red
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* Each edge receives a weight such that
adding weights along the path
corresponds to score for input/ouput
configuration

4

* Any max-weight max-weight path
algorithm can find the argmax
e e.g. Viterbi algorithm O(LK?)



Defining weights of edge in treillis

Unary features at position |
together with Markov features that

end at position |

L
w-p(x,y) =w- )Y ¢(xy) decomposition of structure  (17.35)
[=1

L
=Y w-¢(x,y) associative law  (17.36)
=1

* Weight of edge that goes from time I-
1 to time |, and transitions fromy to y’

w - g(x,---oyoy’)



Dynamic program

Define: the score of best possible output prefix up
to and including position | that labels the |-th word

with label k

app = maxw - 1 (x,§ ok)

Y111

With decomposable features, alphas can be
computed recursively

aH—l,k — max [al,k’ —+ w - 4>l—|—1 (x, < .

k/

K, k))]

ok =0 Vk (17.41)
lox =0 Yk (17.42)

the score for any empty sequence is zero

Q41 = maxw - ¢1.41(x, §ok) (17.43)

Y1

separate score of prefix from score of position |+1

= maxw- (¢r4(x,9) + 9111(x G o k) (17.4)
Y1

distributive law over dot products

= max w0 g1(x,§) + - gy (.9 0 k)| (17.45)
separate out final label from prefix, call it k’

= maxmax [w “pr(x,gok) +w-ra(x,gok’o k)} (17.46)

swap order of maxes, and last term doesn’t depend on prefix
= max H;nax w-Pr(x, 90 k’)}
k! b1

tw g KR 747

apply recursive definition

= max [“l,k' +w-gp(x, (..., K, k>)] (17.48)



Algorithm 42 ARGMAXFORSEQUENCES(x, w)
: L < LEN(x)

A <0, Cgy<o, Vk=1...K, VI=0...L // initialize variables

; forl=0...L-1do

¢ fork=1...Kdo

a1k maxg (o +w-Priq(x, (..., K, k)] // recursion:

/I here, ¢y 1(... k' k...) is the set of features associated with

// output position [ + 1 and two adjacent labels k” and k at that position

6 C1+1k < the k” that achieves the maximum above // store backpointer

»  end for

s. end for

. y < (0,0,...,0) // initialize predicted output to L-many zeros

o Y < argmaxg i /I extract highest scoring final label

w forl=1L-1...1do

2z Y Q,ym / traceback ¢ based on y;, ¢

5 end for

i return y // return predicted output
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A more general approach for argmax
Integer Linear Programming

* ILP: optimization problem of the form,
fc_>r a fixed vector a

max a-z subj. to linear constraints on z
<

* With integer constraints

* Pro: can leverage well-engineered
solvers (e.g., Gurobi)

* Con: not always most efficient



POS tagging as |LP

* Markov features as binary indicator variables

2y = 1[label I is k and label I — 1 is k']

* OQOutput sequence: y(z) obtained by reading off
variables z

* Define a such that a.z is equal to score

Ak =w-Pi(x (..., K, k))

Enforcing constraints for well formed
solutions

. That all the zs are binary. That’s easy: just say z; € {0,1}, for

all K, k.

. That for a given position [, there is exactly one active z. We can do

this with an equality constraint: } ; Y/ z;j = 1 for all L.

. That the zs are internally consistent: if the label at position 5 is

supposed to be “noun” then both z5  and zg need to agree on
this. We can do this as: } s zj gy = Y 4» 2141k for all [, k. Effec-
tively what this is saying is that z5; yery = Zg verb,» Where the “?”
means “sum over all possibilities.”



Sequence labeling

e Structured perceptron

* A general algorithm for structured prediction problems such as
sequence labeling

* The Argmax problem

* Efficient argmax for sequences with Viterbi algorithm, given some
assumptions on feature structure

* A more general solution: Integer Linear Programming

e Loss-augmented structured prediction
* Training algorithm
* Loss-augmented argmax



In structured perceptron, all errors are
equally bad

Algorithm 40 STRUCTUREDPERCEPTRONTRAIN(D, MaxIter)
e W<+ 0 // initialize weights
= foriter = 1 ... MaxIter do
; forall (x,y) € Ddo

§ ) < argmaxgcy ) W ¢(x, 1) /Il compute prediction
5 if # # y then

& w +— w+¢(x,y) —P(x, ) /l update weights
7 end if

s end for

¢ end for

e return w // return learned weights




All bad output sequences are not equally bad
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* Hamming Loss

e Gives a more nuanced evaluation
of output than 0-1 loss

L
e Consider gram (v, 7)) = Z 1y, # )]
=

*y1 =14,4,A,A]
*y, =|N,V,N,N]



Loss functions for structured prediction

* Recall learning as optimization for classification

ol ser e s R
°* e.g., = (hin) )
5 rrzl};n 2 | |w|| +C ;2 <y”’ W Xn + b) Structured hinge loss
0 if true output beats
score of every imposter
, . .. . . . output
* Let’s define a structure-aware optimization objective | - otherwise: scales linearly
as function of score diff
between most confusing

: 1 2 (s-h) imposter and true output
° e.g., I’I}(I)I’l 5 ||ZU|| + C;é > (yn' X1, ZU) \ /

é’(s’h)(yn,xn, w) = max {O, n})a(x | [Sw(Xn,f/) + E(Ham)(ynr ‘7)] — Sw(Xn, 3/n)}
yey(xn



Optimization: stochastic subgradient descent

e Subgradients of structured hinge = max {o,Anﬁx) [sw(xn,y) +e<Ham>(yn,g)] —sw(x,,,yn)}
loss? e

Vol (y,x,w) if the loss is > 0 (17.25)

expand definition using arbitrary structured loss /¢

— vw {A max [w ) (P(xn/ g) T f(yn/ g)} —w- (P(xn/ yn>} (1726)
y€Y(xn)

define ¥, to be the output that attains the maximum above, rearrange

= Velw: ¢ §) —w- ¢(x,y,) +(y,,9) } (17.27)
take gradient

= ¢(xn, ) — ¢(xn,y,,) (17.28)



Optimization: stochastic subgradient descent

* subgradients of structured hinge loss

¢ p(s-h) _
vwe<s-“><yn,xn,w>{ y 0" Wy s 10) =0

¢(xn,9,) — ¢(xn,y,) otherwise

where §, = argmax [w P (xn, ) + é(yn,yfn)} (17-29)
yney(x”>



Optimization: stochastic subgradient descent
Resulting training algorithm

Algorithm 41 STocHSUBGRADSTRUCTSVM(D, MaxIter, A, {)

w40 // initialize weights
= foriter = 1 ... MaxIter do

; forall (x,y) € D do

5: if 7 # y then
6 w—w+P(x,y) —¢(x,7) /| update weights
end if
/I shrink weights due to regularizer
« end for
. end for
: Freturn w // return learned weights

Only 2 differences compared to structured perceptron!



Loss-augmented inference/search
Recall dynamic programming solution without Hamming loss

&1k = maxw - ¢r.41(x, § o k)




oss-augmented inference/search
Dynamic programming with Hamming loss

~ A H A
Ri+1k = MAXTW - P11 (%, 9 0 k) +01 (y, § 0 k)
1:1

We can use Viterbi
algorithm as before as long
as the loss function
decomposes over the input
consistently w features!

monsters eat tasty  bunnies



Sequence labeling

e Structured perceptron

* A general algorithm for structured prediction problems such as
sequence labeling

* The Argmax problem

* Efficient argmax for sequences with Viterbi algorithm, given some
assumptions on feature structure

* A more general solution: Integer Linear Programming

e Loss-augmented structured prediction
* Training algorithm
* Loss-augmented argmax



Syntax & Grammars
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3Sg having string of words
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of a Tanguage

But it 1s an 1nstructive one. DISCOURSE



Syntax & Grammar

* Syntax
* From Greek syntaxis, meaning “setting out together”
 refers to the way words are arranged together.

e Grammar

* Set of structural rules governing composition of clauses, phrases, and words
in any given natural language

* Descriptive, not prescriptive
e Panini’s grammar of Sanskrit ~2000 years ago



Syntax and Grammar

e Goal of syntactic theory

* “explain how people combine words to form sentences and how children
attain knowledge of sentence structure”

* Grammar
* implicit knowledge of a native speaker
e acquired without explicit instruction

* minimally able to generate all and only the possible sentences of the
language

[Philips, 2003]




Syntax in NLP

 Syntactic analysis often a key component in applications
 Grammar checkers
* Dialogue systems
* Question answering

Information extraction

Machine translation



Two views of syntactic structure

e Constituency (phrase structure)
* Phrase structure organizes words in nested constituents

* Dependency structure

e Shows which words depend on (modify or are arguments of) which on other
words



Constituency

* Basic idea: groups of words act as a single unit

* Constituents form coherent classes that behave similarly

* With respect to their internal structure: e.g., at the core of a noun phrase is a
noun

* With respect to other constituents: e.g., noun phrases generally occur before
verbs



Constituency: Example

* The following are all noun phrases in English...

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
o Why? they three parties from Brooklyn

* They can all precede verbs
* They can all be preposed/postposed



Grammars and Constituency

* For a particular language:
* What are the “right” set of constituents?
* What rules govern how they combine?

e Answer: not obvious and difficult

e That’s why there are many different theories of grammar and competing
analyses of the same data!

e Qur approach
* Focus primarily on the “machinery”



Context-Free Grammars

* Context-free grammars (CFGs)

* Aka phrase structure grammars
e Aka Backus-Naur form (BNF)

* Consist of
* Rules
* Terminals
* Non-terminals



Context-Free Grammars

* Terminals
e We'll take these to be words

* Non-Terminals
* The constituents in a language (e.g., noun phrase)

* Rules

* Consist of a single non-terminal on the left and any number of terminals and
non-terminals on the right



An Example Grammar

Grammar Rules

Examples

S — NPVP I + want a morning flight
NP — Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight
Nominal — Nominal Noun  morning + flight
| Noun flights
VP — Verb do
Verb NP want + a flight
Verb NP PP leave + Boston + 1in the morning
Verb PP leaving + on Thursday
PP — Preposition NP from + Los Angeles




Parse Tree: Example
S

N

NP VP
| /\
Pro  verp NP
b
prefer Det Nom
| TN
a Nom Noun
|
Noun flight

Morning



Dependency Grammars

* CFGs focus on constituents
* Non-terminals don’t actually appear in the sentence

* In dependency grammar, a parse is a graph (usually a tree) where:
* Nodes represent words

* Edges represent dependency relations between words
(typed or untyped, directed or undirected)



Dependency Grammars

 Syntactic structure = lexical items linked by binary asymmetrical
relations called dependencies

Dependency Type

!

Head Dependent
(modifier /object / compliment)



Dependency Relations

Argument Dependencies Description

nsubj nominal subject
csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition
Modifier Dependencies Description

tmod temporal modifier
appos appositional modifier
det determiner

prep prepositional modifier




Example Dependency Parse

prep
dobj

nsubj detnn pcomp dobj
‘ ; |l \[ \l/_ll BE2BK

India won the world cup by beating Lanka



Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CcC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

IDTNICEER]  Examples of core Universal Dependency relations.



Universal Dependencies project

* Set of dependency relations that are
* Linguistically motivated
e Computationally useful
e Cross-linguistically applicable
e [Nivre et al. 2016]

* Universaldependencies.org



Summary

* Syntax & Grammar

* Two views of syntactic structures
* Context-Free Grammars
* Dependency grammars

e Can be used to capture various facts about the structure of language (but not
all!)

* Treebanks as an important resource for NLP



