
Dependency Parsing
CMSC 723 / LING 723 / INST 725

Marine Carpuat

Fig credits: Joakim Nivre, Dan 
Jurafsky & James Martin



Dependency Parsing

• Formalizing dependency trees

• Transition-based dependency parsing
• Shift-reduce parsing

• Transition system

• Oracle

• Learning/predicting parsing actions



Dependency Grammars

• Syntactic structure = lexical items linked by binary asymmetrical 
relations called dependencies 



Dependency Relations





Example Dependency Parse

They hid the letter on the shelf

Compare with constituent parse… What’s the relation?



Dependency formalisms

• Most general form: a graph G = (V,A)
• V vertices: usually one per word in sentence

• A arcs (set of ordered pairs of vertices): head-dependent relations between 
elements in V

• Restricting to trees provide computational advantages
• Single designated ROOT node that has no incoming arcs

• Except for ROOT, each vertex has exactly one incoming arc

• Unique path from ROOT to each vertex in V

• Each word has a single head
• Dependency structure is connected
• There is a single root node from which there is a unique path to each word







Projectivity

• Arc from head to dependent is projective
• If there is a path from head to every word between head and 

dependent

• Dependency tree is projective
• If all arcs are projective
• Or equivalently, if it can be drawn with no crossing edges

• Projective trees make computation easier
• But most theoretical frameworks do not assume projectivity

• Need to capture long-distance dependencies, free word order



Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs

Input: sentence 

Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task

- very large output space

- with interdependent labels 

2 dominant approaches: transition-based parsing and graph-based 
parsing



Transition-based dependency parsing

• Builds on shift-reduce parsing
[Aho & Ullman, 1927]

• Configuration
• Stack
• Input buffer of words
• Set of dependency relations

• Goal of parsing
• find a final configuration where
• all words accounted for
• Relations form dependency tree



Transition operators

• Transitions: produce a new 
configuration given current 
configuration

• Parsing is the task of 
• Finding a sequence of transitions

• That leads from start state to 
desired goal state

• Start state
• Stack initialized with ROOT node

• Input buffer initialized with words 
in sentence

• Dependency relation set = empty

• End state
• Stack and word lists are empty

• Set of dependency relations = final 
parse



Arc Standard Transition System

• Defines 3 transition operators [Covington, 2001; Nivre 2003] 

• LEFT-ARC:
• create head-dependent rel. between word at top of stack and 2nd word (under 

top)

• remove 2nd word from stack

• RIGHT-ARC:
• Create head-dependent rel. between word on 2nd word on stack and word on 

top

• Remove word at top of stack 

• SHIFT
• Remove word at head of input buffer

• Push it on the stack



Arc standard transition systems

• Preconditions
• ROOT cannot have incoming arcs

• LEFT-ARC cannot be applied when ROOT is the 2nd element in stack

• LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied



Transition-based Dependency Parser

• Assume an oracle 

• Parsing complexity
• Linear in sentence 

length!

• Greedy algorithm
• Unlike Viterbi for POS 

tagging



Transition-Based Parsing Illustrated



Where to we get an oracle?

• Multiclass classification problem
• Input: current parsing state (e.g., current and previous configurations)

• Output: one transition among all possible transitions 

• Q: size of output space?

• Supervised classifiers can be used
• E.g., perceptron

• Open questions
• What are good features for this task?

• Where do we get training examples?



Generating Training Examples

• What we have in a treebank • What we need to train an oracle
• Pairs of configurations and 

predicted parsing action



Generating training examples

• Approach: simulate parsing to generate reference tree

• Given
• A current config with stack S, dependency relations Rc

• A reference parse (V,Rp)

• Do



Let’s try it out



Features

• Configuration consist of stack, buffer, current set of relations

• Typical features
• Features focus on top level of stack

• Use word forms, POS, and their location in stack and buffer



Features example

• Given configuration • Example of useful features



Dependency Parsing

• Formalizing dependency trees

• Transition-based dependency parsing
• Shift-reduce parsing

• Transition system

• Oracle

• Learning/predicting parsing actions


