Dependency Parsing

CMSC 723 / LING 723 / INST 725

Marine Carpuat

Fig credits: Joakim Nivre, Dan
Jurafsky & James Martin

Dependency Parsing

* Formalizing dependency trees

* Transition-based dependency parsing
 Shift-reduce parsing
* Transition system
* Oracle
 Learning/predicting parsing actions

Dependency Grammars

 Syntactic structure = lexical items linked by binary asymmetrical
relations called dependencies

Dependency Type

!

Head Dependent
(modifier /object / compliment)

Dependency Relations

Argument Dependencies Description

nsubj nominal subject
csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition
Modifier Dependencies Description

tmod temporal modifier
appos appositional modifier
det determiner

prep Prepﬂsitiunal modifier

Relation Examples with iead and dependent
NSUBJ United canceled the flight.
DOBIJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0OBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONIJ We flew to Denver and drove to Steamboat.
CcC We flew to Denver and drove to Steamboat.
CASE Book the flight through Housron.

Figure 14.3

Examples of core Universal Dependency relations.

Example Dependency Parse

prep
dobj

nsubj detnn pcomp dobj
‘ ; |l J \I/_I| 2K,

India won the world cup by beating Lanka

Dependency formalisms

* Most general form: a graph G = (V,A)
* V vertices: usually one per word in sentence

* A arcs (set of ordered pairs of vertices): head-dependent relations between
elementsinV

* Restricting to trees provide computational advantages
* Single designated ROOT node that has no incoming arcs

* Except for ROOT, each vertex has exactly one incoming arc
* Unique path from ROOT to each vertexin V

* Each word has a single head

* Dependency structure is connected
* There is a single root node from which there is a unique path to each word

P

root

pred obj ofe
nmod sbj nmod |nmod nmod
Economic news had little effect on financial

markets

. -

pPC

What did

P
Vg
sbj obj
nmod nmod |nmod
economic ne\\/rvs have little effect on 7

*

Projectivity

* Arc from head to dependent is projective

* If there is a path from head to every word between head and
dependent

* Dependency tree is projective
e If all arcs are projective
* Or equivalently, if it can be drawn with no crossing edges

* Projective trees make computation easier

* But most theoretical frameworks do not assume projectivity
* Need to capture long-distance dependencies, free word order

Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs
Input: sentence
Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task
- very large output space
- with interdependent labels

2 dominant approaches: transition-based parsing and graph-based
parsing

Transition-based dependency parsing

| * Builds on shift-reduce parsing
nput buffer
1 . [Aho & Ullman, 1927]
e Configuration
11 e Stack
- f: Parser | Debendency * Input buffer of words
sack |- * Set of dependency relations
* Goal of parsing
n find a final configuration where
— * all words accounted for

ISTNICEER] Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

* Relations form dependency tree

Transition operators

* Transitions: produce a new
configuration given current
configuration

* Parsing is the task of
* Finding a sequence of transitions

 That leads from start state to
desired goal state

» Start state
e Stack initialized with ROOT node

* Input buffer initialized with words
in sentence

* Dependency relation set = empty

e End state

e Stack and word lists are empty

* Set of dependency relations = final
parse

Arc Standard Transition System

* Defines 3 transition operators [Covington, 2001; Nivre 2003]
e LEFT-ARC:

* create head-dependent rel. between word at top of stack and 2"9 word (under

top)
* remove 2" word from stack

* RIGHT-ARC:

* Create head-dependent rel. between word on 2" word on stack and word on
top

* Remove word at top of stack
e SHIFT

 Remove word at head of input buffer
* Push it on the stack

Arc standard transition systems

* Preconditions
* ROOT cannot have incoming arcs
* LEFT-ARC cannot be applied when ROOT is the 2"9 element in stack
* LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

Transition-based Dependency Parser

e Assume an oracle

function DEPENDENCYPARSE(words) returns dependency tree

* Parsing complexity

state <— {[root], [words], [] } ; initial configuration

while srate not final e Linear in sentence
t<— ORACLE(state) ; choose a transition operator to apply |
state «+— APPLY(t, state) ; apply it, creating a new state Ie n gt h .

return srate

A generic transition-based dependency parser e Gree dy 3 Ig o rlth m

e Unlike Viterbi for POS
tagging

Transition-Based Parsing lllustrated

root

iobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning + flight)
7 [root, book, the, flight] | [] LEFTARC (the < flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

DTN Trace of a transition-based parse.

Where to we get an oracle?

* Multiclass classification problem
 Input: current parsing state (e.g., current and previous configurations)
e Output: one transition among all possible transitions
e Q: size of output space?

 Supervised classifiers can be used
* E.g., perceptron

* Open questions
 What are good features for this task?
 Where do we get training examples?

Generating Training Examples

e What we have in a treebank

t
nmod
[\

Book the flight through Houston

predicted parsing action

* What we need to train an oracle
* Pairs of configurations and

Step Stack Word List Predicted Action

0 [root] [book, the, flight, through, houston] SHIFT

| [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] SHIFT

3 [root, book, the, flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston | SHIFT

6 [root, book, flight, through, houston] [] LEFTARC
7 [root, book, flight, houston | [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
9 [root, book] [] RIGHTARC
10 [root] [] Done

BT CBERY Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Generating training examples

* Approach: simulate parsing to generate reference tree

* Given
* A current config with stack S, dependency relations Rc
* A reference parse (V,Rp)

* Do

LEFTARC(r): if (S; r S2) € R,

RIGHTARC(r): if (S2 rS1) € R, and V', w s.t.(S; ' w) € R, then (S| /' w) €
R.

SHIFT: otherwise

Let’s try it out

LEFTARC(r): if (S1rS>2) € R,
RIGHTARC(r): if (S> rS1) € R, and Vi’ ,ws.r.(S; ' w) € R, then (S ¥ w) €
R,
SHIFT: otherwise
(rool

v

Book the flight through Houston

Features

* Configuration consist of stack, buffer, current set of relations

* Typical features

* Features focus on top level of stack
* Use word forms, POS, and their location in stack and buffer

Features example

* Given configuration * Example of useful features
Stack Word buffer Relations (s1.w = flights, op = shift)
[root, canceled, flights] | [to Houston] | (canceled — United) (s2.w = canceled, op = shift)
(flights — morning) (s1.t = NNS,op = shift)
(flights — the) (s2.t = VBD,op = shift)
(b1.w = to,op = shift)
(by.t = TO,0p = shift)
(s1.wt = flightsNNS,op = shift)

(s1t.s2t = NNSVBD, op = shift)

Dependency Parsing

* Formalizing dependency trees

* Transition-based dependency parsing
 Shift-reduce parsing
* Transition system
* Oracle
 Learning/predicting parsing actions

