
Dependency	Parsing	2
CMSC	723	/	LING	723	/	INST	725

Marine	Carpuat

Fig	credits:	Joakim Nivre,	Dan	
Jurafsky &	James	Martin



Dependency	Parsing

• Formalizing	dependency	trees

• Transition-based	dependency	parsing
• Shift-reduce	parsing
• Transition	system
• Oracle
• Learning/predicting	parsing	actions



Data-driven	dependency	parsing

Goal: learn	a	good	predictor	of	dependency	graphs
Input:	sentence	
Output:	dependency	graph/tree	G	=	(V,A)

Can	be	framed	as	a	structured	prediction	task
- very	large	output	space
- with	interdependent	labels	

2	dominant	approaches:	transition-based	parsing	and	graph-based	
parsing



Transition-based	dependency	parsing

• Builds	on	shift-reduce	parsing
[Aho &	Ullman,	1927]

• Configuration
• Stack
• Input	buffer of	words
• Set	of	dependency	relations

• Goal	of	parsing
• find	a	final	configuration	where
• all	words	accounted	for
• Relations	form	dependency	tree



Transition	operators

• Transitions:	produce	a	new	
configuration	given	current	
configuration

• Parsing	is	the	task	of	
• Finding	a	sequence	of	transitions
• That	leads	from	start	state	to	
desired	goal	state

• Start	state
• Stack	initialized	with	ROOT	node
• Input	buffer	initialized	with	words	
in	sentence
• Dependency	relation	set	=	empty

• End	state
• Stack	and	word	lists	are	empty
• Set	of	dependency	relations	=	final	
parse



Arc	Standard	Transition	System

• Defines	3	transition	operators	[Covington,	2001;	Nivre 2003]	
• LEFT-ARC:
• create	head-dependent	rel.	between	word	at	top	of	stack	and	2nd word	
(under	top)
• remove	2nd word	from	stack

• RIGHT-ARC:
• Create	head-dependent	rel.	between	word	on	2nd word	on	stack	and	word	on	
top
• Remove	word	at	top	of	stack	

• SHIFT
• Remove	word	at	head	of	input	buffer
• Push	it	on	the	stack



Arc	standard	transition	systems

• Preconditions
• ROOT	cannot	have	incoming	arcs
• LEFT-ARC	cannot	be	applied	when	ROOT	is	the	2nd element	in	stack
• LEFT-ARC	and	RIGHT-ARC	require	2	elements	in	stack	to	be	applied



Transition-based	Dependency	Parser

• Assume	an	oracle	

• Parsing	complexity
• Linear	in	sentence	
length!

• Greedy	algorithm
• Unlike	Viterbi	for	POS	
tagging



Transition-Based	Parsing	Illustrated



Where	to	we	get	an	oracle?

• Multiclass	classification	problem
• Input:	current	parsing	state	(e.g.,	current	and	previous	configurations)
• Output:	one	transition	among	all	possible	transitions	
• Q:	size	of	output	space?

• Supervised	classifiers	can	be	used
• E.g.,	perceptron

• Open	questions
• What	are	good	features	for	this	task?
• Where	do	we	get	training	examples?



Generating	Training	Examples

• What	we	have	in	a	treebank • What	we	need	to	train	an	oracle
• Pairs	of	configurations	and	
predicted	parsing	action



Generating	training	examples

• Approach:	simulate	parsing	to	generate	reference	tree

• Given
• A	current	config with	stack	S,	dependency	relations	Rc
• A	reference	parse	(V,Rp)

• Do



Let’s	try	it	out



Features

• Configuration	consist	of	stack,	buffer,	current	set	of	relations

• Typical	features
• Features	focus	on	top	level	of	stack
• Use	word	forms,	POS,	and	their	location	in	stack	and	buffer



Features	example

• Given	configuration • Example	of	useful	features



Features	example



Research	highlight:	
Dependency	parsing	with	stack-LSTMs
• From	Dyer	et	al.	2015:	http://www.aclweb.org/anthology/P15-1033

• Idea
• Instead	of	hand-crafted	feature
• Predict	next	transition	using	recurrent	neural	networks	to	learn	
representation	of	stack,	buffer,	sequence	of	transitions



Research	highlight:	
Dependency	parsing	with	stack-LSTMs



Research	highlight:	
Dependency	parsing	with	stack-LSTMs



Alternate	Transition	Systems



Note:	A	different	way	of	writing	arc-standard	
transition	system



A	weakness	of		arc-standard	parsing

Right	dependents	cannot	be	attached	to	their	head	
until	all	their	dependents	have	been	attached



Arc	Eager	Parsing
• LEFT-ARC:

• Create	head-dependent	rel.	between	word	at	front	of	buffer	and		word	at	top	of	
stack

• pop	the	stack
• RIGHT-ARC:

• Create	head-dependent	rel.	between	word	on	top	of	stack	and	word	at	front	of	
buffer

• Shift	buffer	head	to	stack
• SHIFT

• Remove	word	at	head	of	input	buffer
• Push	it	on	the	stack

• REDUCE
• Pop	the	stack



Arc	Eager	Parsing	Example



Trees	&	Forests

• A	dependency	forest	(here)	is	a	dependency	graph	satisfying
• Root
• Single-Head
• Acyclicity
• but	not Connectedness



Properties	of	this	transition-based
parsing	algorithm

- Correctness
- For	every	complete	transition	sequence,	the	resulting	graph	is	a	projective	
dependency	forest	(soundness)

- For	every	projective	dependency	forest	G,	there	is	a	transition	sequence	that	
generates	G	(completeness)

- Trick:	forest	can	be	turned	into	tree	by	adding	links	to	ROOT0



Dealing	with	
non-projectivity



Projectivity
• Arc from	head	to	dependent	is	projective
• If	there	is	a	path	from	head	to	every	word	between	head	and	
dependent

• Dependency	tree is	projective
• If	all	arcs	are	projective
• Or	equivalently,	if	it	can	be	drawn	with	no	crossing	edges

• Projective	trees	make	computation	easier
• But	most	theoretical	frameworks	do	not	assume	projectivity
• Need	to	capture	long-distance	dependencies,	free	word	order



Arc-standard	parsing	can’t	produce	non-
projective	trees





How	frequent	are	non-projective	structures?

• Statistics	from	CoNLL shared	task
• NPD	=	non	projective	dependencies
• NPS	=	non	projective	sentences



How	to	deal	with	non-projectivity?
(1)	change	the	transition	system

• Add	new	transitions
• That	apply	to	2nd word	of	the	stack
• Top	word	of	stack	is	treated	as	context

[Attardi 2006]



How	to	deal	with	non-projectivity?
(2)	pseudo-projective	parsing

Solution:	
• “projectivize”	a	non-projective	tree	by	creating	
new	projective	arcs	
• That	can	be	transformed	back	into	non-projective	
arcs	in	a	post-processing	step



How	to	deal	with	non-projectivity?
(2)	pseudo-projective	parsing

Solution:	
• “projectivize”	a	non-projective	tree	by	creating	
new	projective	arcs	
• That	can	be	transformed	back	into	non-projective	
arcs	in	a	post-processing	step



Graph-based	parsing



Graph	concepts	refresher



Directed	Spanning	Trees



Maximum	Spanning	Tree

• Assume	we	have	an	arc	factored	model
i.e.	weight	of	graph	can	be	factored	as	sum	or	product	of	weights	of	its	arcs

• Chu-Liu-Edmonds	algorithm	can	find	the	maximum	spanning	tree	for	
us!
• Greedy	recursive	algorithm
• Naïve	implementation:	O(n^3)



Chu-Liu-Edmonds	illustrated



Chu-Liu-Edmonds	illustrated



Chu-Liu-Edmonds	illustrated



Chu-Liu-Edmonds	illustrated



Chu-Liu-Edmonds	illustrated





Arc	weights	as	linear	classifiers



Example	of	classifier	features



How	to	score	a	graph	G
using	features?

Arc-factored	model	
assumption

By	definition	of		arc	weights	
as	linear	classifiers



How	can	we	learn	
the	classifier	from	data?



Dependency	Parsing:	what	you	should	know
• Formalizing	dependency	trees

• Transition-based	dependency	parsing
• Shift-reduce	parsing
• Transition	system:	arc	standard,	arc	eager
• Oracle
• Learning/predicting	parsing	actions

• Graph-based	dependency	parsing

• A	flexible	framework	that	allows	many	extensions
• RNNs	vs	feature	engineering,	non-projectivity





Extension:	dynamic	oracle

Problem	with	standard	classifier-based	oracle:
- It	is	“static”

- ie tied	to	optimal	config sequence	that	produces	gold	tree

- What	if	there	are	multiple	sequences	for	a	single	gold	tree?
- How	can	we	recover	if	the	parser	deviates	from	gold	sequence?

One	solution:	“dynamic	oracle”	[Goldberg	&	Nivre 2012]

See	also	Locally	Optimal	Learning	to	Search	[Chang	et	al.	ICML	2015]



Extension:	dynamic	oracle
Problem	with	standard

See	[Goldberg	&	Nivre 2012]	for	details


