Fromn

to Imitatl

De

oS

ndency Parsing

ol

Learning

CMSC 723 / LING 723 / INST 725

Marine Carpuat

Fig credits: Joakim Nivre, Yoav
Goldberg, Hal Daume Il

Today’s topics:
Addressing compounding error

* Improving on gold parse oracle
* Research highlight: [Goldberg & Nivre, 2012]

* Imitation learning for structured prediction
e CIMLch 18

http://www.aclweb.org/anthology/C12-1059

Improving the oracle
in transition-pased dependency parsing

* Issues with oracle we’ve used so far
* Based on configuration sequence that produces gold tree
 What if there are multiple sequences for a single gold tree?
* How can we recover if the parser deviates from gold sequence?

* Goldberg & Nivre [2012] propose an improved oracle

A Dynamic Oracle for Arc-Eager Dependency Parsing

Yoav Goldberg! Joakim Nivrel?
(1) Google Inc.
(2) Uppsala University
yogo@google.com, joakim.nivre@lingfil.uu.se

P

4 w

PRD DOBJ

ROOT, He, wrote, her, ay letters 6

SHJ LASBJ’ RAPRDJ RAIOBJ? SH? LADET’ RE? RADOBJ’ R'E R‘AP
SH? LASBJ? RAPRDJ RAIOBJ? RE? SH? LADET’ RADOBJ’ RE RAP

Exercise: which of these transition sequences

produces the gold tree on the left?

Stack Buffer Dependency Arc frgm position j to position i,
Arcs with dependency label |
— //

Algorithm\ll Sta%(ard cle for We/pendency parsing

. ifc = (oli, j|B,A) and (j,1,1) € Agoq then
t «— LEFT-ARC;
else if c = (oli, j|,A) and (i,1, j) € Ay then
t < RIGHT-AR(
else if c = (o|i, j|B,A) and dk[k <i A 3dl[(k,L,])) € Agola V (j, 1, k) eAgold]] then
t «<— REDUCE
else
t «<— SHIFT
return t

PRI L LD A

Algorithm 1 Standard oracle for arc-eager dependency parsing

1: if c = (oli, jIB,A) and (j,1,1) € Ay then
2: t <« LEFT-ARC;
3: else if c = (oi, j|f,A) and (i, 1, j) € Ageq then
4: t < RIGHT-ARC,
5. elseif c = (o|i, j|B,A) and dk[k <iA3l[(k,L,]) € Agola V (4,1, k) eAgold]] then
6: t «<— REDUCE
7: else
8: t «— SHIFT
9: return t
- SH? LASBJ’ RAPRD’ RAIOBJ) SHJ LADET’ RE? RADOBJJ RE RAP
SH, LA;,, RApp, RAjys RE, SH, LA, RAo,, RE RA,
(SBJ l (10BJ DET 1
ROOT He, wrote, hers ay letters 6

Which of these transition sequences

does the oracle algorithm produce?

Improving the oracle
in transition-pased dependency parsing

* |ssues with oracle we’ve used so far
* Based on configuration sequence that produces gold tree
 What if there are multiple sequences for a single gold tree?
* How can we recover if the parser deviates from gold sequence?

* Goldberg & Nivre [2012] propose an improved oracle

A Dynamic Oracle for Arc-Eager Dependency Parsing

Yoav Goldberg! Joakim Nivrel?
(1) Google Inc.
(2) Uppsala University
yogo@google.com, joakim.nivre@lingfil.uu.se

p

4 w

PRD DOBJ

ROOT, He, wrote, her, ay letters 6

SH, LA, , RA,,, SHIFT

At test time, suppose the 4t transition predicted is

SHIFT instead of RAioe;
What happens if we apply the oracle next?

Measuring distance from gold tree

* Labeled attachment loss: number of arcs in gold tree that are not

found in the predicted tree

PRD

|

ROOT|,

4

He, wrote,

her,

DET

ay letters

‘6

P

DOBJ

PRD

|

ROOT,,

|

He, wrote,

DET

|

her,

%ﬂ

ay letters

Improving the oracle
in transition-pased dependency parsing

* Issues with oracle we’ve used so far
* Based on configuration sequence that produces gold tree
 What if there are multiple sequences for a single gold tree?
* How can we recover if the parser deviates from gold sequence?

* Goldberg & Nivre [2012] propose an improved oracle

A Dynamic Oracle for Arc-Eager Dependency Parsing

Yoav Goldberg! Joakim Nivrel?
(1) Google Inc.
(2) Uppsala University
yogo@google.com, joakim.nivre@lingfil.uu.se

Proposed solution:
2 key changes to training algorithm

Algorithm 3 Online training with a dynamic oracle

1: w0
2: for I =1 — ITERATIONS do

for sentence x with gold tree Gg4 in corpus do = .
¢ — c.(x) Any transition that can possibly
S

while c is not terminal do lead to a correct tree is
t, < argmax, w- ¢(c, t) considered correct
ZERO_COST «— {t|o(t;c, Ggoq) = true}
o <= argMaXtezgro_cost W (;b(C, t)
it t, & ZERO_COST then

10: we—w+ ¢(c,t,)— ¢(c,t,) Explore non-optimal transitions

N N A A

p»ZERO_COST)

11: t, < CHOOSE NEXT(/,t
12: c«—t,(c)

13: return w

Proposed solution:
2 key changes to training algorithm

Algorithm 3 Online training with a dynamic oracle

- w0 1: function CHOOSE_NEXT,,,, (I,t,ZERO_COST)

2: for I =1 — ITERATIONS do 2 if t € zERO_cosT then

3: for sentence x with gold tree G,,q in corpus do 3: return ¢

4: ¢ «— ¢,(x) 4 else

5: while ¢ is not terminal do 5 return RANDOM_ELEMENT(ZERO COST)

6: t, < argmax, w- ¢(c, t)

’: ZERO_COST «— {t|o(t; ¢, Gyoiq) = true] J 1: function CHOOSE NEXT,,,(I,t,ZERO_COST)

o fo <~ AT§MaXrezeno_cost W (e, 1) 2: if I > k and R/_\NDO > p then -

9: it t, & ZERO_COST then '
10: wewt e, t,)— ple,t,) > return {

’ ’ 4. else

1L [t < CHOOSE_NEXT(I,t,,ZERO_COST) J 5: return CHOOSE_NEXT,,, (I,t,ZERO_COST)
12: c — t,(c) - -

: return w

—
w

Defining the cost of a transition

* Loss difference between minimum loss trees achievable before and
after transition

6(t;¢,Ggoa) = [G:?(lci)gG—‘f(G, Ggold)j| — [GI}EPG%(G, Ggold)i|

* Loss for trees nicely decomposes into losses for arcs

* We can compute transition cost by counting gold arcs that are no longer
reachable after transition

Today'’s topics
Addressing compounding error

* Improving on gold parse oracle
* Research highlight: [Goldberg & Nivre, 2012]

* Imitation learning for structured prediction
e CIMLch 18

http://www.aclweb.org/anthology/C12-1059

Imitation Learning
aka learning by demonstration

* Sequential decision making problem

* At each pointintime t
* Receive input information x;
* Take action a;
 Suffer loss [;
* Move to next time step until time T

* Goal
* learn a policy function f(x;) = y;

* That minimizes expected total loss over all trajectories enabled by f

T=X1, M /€1/x2/ an /€2/ eoe , XT , 4T /ET
N N~ N

:f(xl) :f(xZ) :f(xT)

Supervised Imitation Learning

Algorithm 43 SUPERVISEDIMITATIONTRAIN(A, T1,T>,..., TN)

¢ D« ((x,a) : Vn, VY(x,a,l)€Ty) // collect all observation/action pairs
» return A(D) // train multiclass classifier on D

Algorithm 44 SUPERVISEDIMITATIONTEST(f)
. fort=1...Tdo
2: x; <— current observation

ar < f(xy) // ask policy to choose an action
s take action a;

k]

5. {; < observe instantaneous loss
«. end for
» return Z;f:l ly // return total loss

Supervised Imitation Learning

Algorithm 43 SUPERVISEDIMITATIONTRAIN(A, T1,T2,..., TN)

v D ((x,a) : Vn, V(x,a,l) € Ty) // collect all observation/aci
= return A(D) // o multiclas

Algorithm 44 SUPERVISEDIMIT! T
- fort=1...Tdc Problem with

S : ;‘grr‘;“t ObsES supervised approach:
3 at Xt :
+ take actios Compounding error
5 fp + observe INS®

« end for

-~ return YL 4,

// return total loss

How can we train system to make better
predictions off the expert path?

* We want a policy f that leads to good performance in configurations
that f encounters

* A chicken and egg problem

* Can be addressed by iterative approach

DAGGER: simple & effective imitation
earning via Data AGGregation

Algorithm 45 DAGGERTRAIN(.A, Maxlter, N, expert)

s (T)V < run the expert N many times
Dy + (x,a) : Vn, V¥(x,a,0) € 'rn) // collect all pairs (same as supervised)

N

Requires interaction

3 fo < A(Dp) // train initial policy (multiclass classifier) on Dy with expert!
g fori=1 ... Maxlter do

5: ('r,q))n | < run policy f;_; N-many times // trajectories by f;_4

o Dj < ((x,expert(x)) : Vn, V(x,a,{) € Tﬁ?) // collect data set

// observations x visited by f; 1
// but actions according to the expert

fi A (;‘:0 D]-) // train policy f; on union of all data so far

end for
return (fo, f1,..., fMaxiter) // return collection of all learned policies

~

&

e

When is DAGGER used in practice?

* Interaction with expert is not always possible

* Classic use case
e Expert = slow algorithm
* Use DAGGER to learn a faster algorithm that imitates expert
* Example: game playing where expert = brute-force search in simulation mode

* But also structured prediction

Sequence labeling via imitation learning

* What is the “expert” here?
e Given a loss function (e.g., Hamming loss)
* Expert takes action that minimizes long-term loss

x = “ monsters eat tasty bunnies “ expert(/,y,#) = argminbest({,y, o a)

Yy = noun verb ad] noun Loss of best reachable

Output prefix output starting with

attime t

A\

prefix

* When expert can be computed exactly, it is called an
oracle

* Key advantages
* Can define features ¢(x,9)
* No restriction to Markov features

Today'’s topics

* Improving on gold parse oracle
* Research highlight: [Goldberg & Nivre, 2012]

* Imitation learning for structured prediction
e CIMLch 18

http://www.aclweb.org/anthology/C12-1059

