From Dependency Parsing to Imitation Learning

CMSC 723 / LING 723 / INST 725

Marine Carpuat

Fig credits: Joakim Nivre, Yoav Goldberg, Hal Daume III

Today's topics: Addressing compounding error

- Improving on gold parse oracle
 - Research highlight: [Goldberg & Nivre, 2012]
- Imitation learning for structured prediction
 - CIML ch 18

Improving the oracle in transition-based dependency parsing

- Issues with oracle we've used so far
 - Based on configuration sequence that produces gold tree
 - What if there are multiple sequences for a single gold tree?
 - How can we recover if the parser deviates from gold sequence?
- Goldberg & Nivre [2012] propose an improved oracle

A Dynamic Oracle for Arc-Eager Dependency Parsing

Yoav Goldberg¹ Joakim Nivre^{1,2} (1) Google Inc. (2) Uppsala University yogo@google.com, joakim.nivre@lingfil.uu.se

SH, LA_{SBJ} , RA_{PRD} , RA_{IOBJ} , SH, LA_{DET} , RE, RA_{DOBJ} , RE RA_{P} SH, LA_{SBJ} , RA_{PRD} , RA_{IOBJ} , RE, SH, LA_{DET} , RA_{DOBJ} , RE RA_{P}

Exercise: which of these transition sequences produces the gold tree on the left?

Algorithm 1 Standard oracle for arc-eager dependency parsing

- 1: if $c = (\sigma | i, j | \beta, A)$ and $(j, l, i) \in A_{\text{gold}}$ then
- 2: $t \leftarrow \text{Left-Arc}_l$
- 3: else if $c = (\sigma|i, j|\beta, A)$ and $(i, l, j) \in A_{\text{gold}}$ then
- 4: $t \leftarrow \text{Right-Arc}_l$
- 5: else if $c = (\sigma|i, j|\beta, A)$ and $\exists k[k < i \land \exists l[(k, l, j) \in A_{gold} \lor (j, l, k) \in A_{gold}]]$ then
- 6: $t \leftarrow \text{Reduce}$
- 7: **else**
- 8: $t \leftarrow Shift$
- 9: **return** *t*

SH, LA_{SBJ} , RA_{PRD} , RA_{IOBJ} , SH, LA_{DET} , RE, RA_{DOBJ} , RE RA_{PRD} , SH, LA_{SBJ} , RA_{PRD} , RA_{IOBJ} , RE, SH, LA_{DET} , RA_{DOBJ} , RE RA_{PRD}

Which of these transition sequences does the oracle algorithm produce?

Improving the oracle in transition-based dependency parsing

- Issues with oracle we've used so far
 - Based on configuration sequence that produces gold tree
 - What if there are multiple sequences for a single gold tree?
 - How can we recover if the parser deviates from gold sequence?
- Goldberg & Nivre [2012] propose an improved oracle

A Dynamic Oracle for Arc-Eager Dependency Parsing

Yoav Goldberg¹ Joakim Nivre^{1,2} (1) Google Inc. (2) Uppsala University yogo@google.com, joakim.nivre@lingfil.uu.se

SH, LA_{SBJ} , RA_{PRD} , SHIFT

At test time, suppose the 4th transition predicted is SHIFT instead of RA_{IOBJ} What happens if we apply the oracle next?

Measuring distance from gold tree

• Labeled attachment loss: number of arcs in gold tree that are not found in the predicted tree

Improving the oracle in transition-based dependency parsing

- Issues with oracle we've used so far
 - Based on configuration sequence that produces gold tree
 - What if there are multiple sequences for a single gold tree?
 - How can we recover if the parser deviates from gold sequence?
- Goldberg & Nivre [2012] propose an improved oracle

A Dynamic Oracle for Arc-Eager Dependency Parsing

Yoav Goldberg¹ Joakim Nivre^{1,2} (1) Google Inc. (2) Uppsala University yogo@google.com, joakim.nivre@lingfil.uu.se

Proposed solution: 2 key changes to training algorithm

13: return w

Proposed solution: 2 key changes to training algorithm

Algorithm 3 Online training with a dynamic oracle	
1:	$\mathbf{w} \leftarrow 0$
2:	for $I = 1 \rightarrow$ iterations do
3:	for sentence x with gold tree G_{gold} in corpus do
4:	$c \leftarrow c_s(x)$
5:	while c is not terminal do
6:	$t_p \leftarrow \arg \max_t \mathbf{w} \cdot \phi(c, t)$
7:	$ZERO_COST \leftarrow \{t o(t; c, G_{gold}) = true\}$
8:	$t_o \leftarrow \operatorname{argmax}_{t \in \text{ZERO}_\text{COST}} \mathbf{w} \cdot \boldsymbol{\phi}(c, t)$
9:	if $t_p \notin \text{zero}_{\text{cost}}$ then
10:	$\mathbf{w} \leftarrow \mathbf{w} + \phi(c, t_o) - \phi(c, t_p)$
11:	$t_n \leftarrow \text{CHOOSE}_\text{NEXT}(I, t_p, \text{ZERO}_\text{COST})$
12:	$c \leftarrow t_n(c)$

- 1: **function** CHOOSE_NEXT_{AMB}(*I*,*t*,ZERO_COST)
- 2: **if** $t \in \text{zero}_\text{cost}$ **then**
- 3: **return** *t*
- 4: **else**
- 5: **return** RANDOM_ELEMENT(ZERO_COST)
- 1: **function** CHOOSE_NEXT_{EXP}(*I*,*t*,ZERO_COST)
- 2: **if** I > k and RAND() > p **then**
- 3: **return** *t*
- 4: **else**
- 5: **return** CHOOSE_NEXT_{AMB} $(I, t, ZERO_COST)$

13: **return w**

Defining the cost of a transition

 Loss difference between minimum loss trees achievable before and after transition

$$\mathscr{C}(t;c,G_{\text{gold}}) = \left[\min_{G:t(c)\rightsquigarrow G}\mathscr{L}(G,G_{\text{gold}})\right] - \left[\min_{G:c\rightsquigarrow G}\mathscr{L}(G,G_{\text{gold}})\right]$$

- Loss for trees nicely decomposes into losses for arcs
 - We can compute transition cost by counting gold arcs that are no longer reachable after transition

Today's topics Addressing compounding error

- Improving on gold parse oracle
 - Research highlight: [Goldberg & Nivre, 2012]
- Imitation learning for structured prediction
 - CIML ch 18

Imitation Learning aka learning by demonstration

- Sequential decision making problem
 - At each point in time *t*
 - Receive input information x_t
 - Take action a_t
 - Suffer loss l_t
 - Move to next time step until time T
- Goal
 - learn a **policy** function $f(x_t) = y_t$
 - That minimizes expected total loss over all trajectories enabled by f

$$\boldsymbol{\tau} = \boldsymbol{x}_1, \underbrace{a_1}_{=f(\boldsymbol{x}_1)}, \ell_1, \boldsymbol{x}_2, \underbrace{a_2}_{=f(\boldsymbol{x}_2)}, \ell_2, \ldots, \boldsymbol{x}_T, \underbrace{a_T}_{=f(\boldsymbol{x}_T)}, \ell_T$$

Supervised Imitation Learning

Algorithm 43 SUPERVISEDIMITATION TRAIN $(\mathcal{A}, \tau_1, \tau_2, \ldots, \tau_N)$

 $D \leftarrow \langle (x, a) : \forall n, \forall (x, a, \ell) \in \tau_n \rangle$ // collect all observation/action pairs ^{2:} return $\mathcal{A}(D)$

// train multiclass classifier on D

Algorithm 44 SUPERVISEDIMITATIONTEST(*f*)

- $_{1:}$ for t = 1 ... T do
- $x_t \leftarrow$ current observation 2:
- $a_t \leftarrow f(\mathbf{x}_t)$ 3:

// ask policy to choose an action

- take action a_t 4:
- $\ell_t \leftarrow \text{observe instantaneous loss}$
- 6: end for
- 7: return $\sum_{t=1}^{T} \ell_t$

// return total loss

Supervised Imitation Learning

How can we train system to make better predictions off the expert path?

- We want a policy f that leads to good performance in configurations that f encounters
- A chicken and egg problem
 - Can be addressed by iterative approach

DAGGER: simple & effective imitation learning via Data AGGregation

Algorithm 45 DAGGERTRAIN(A, MaxIter, N, expert)

1: $\langle \boldsymbol{\tau}_n^{(0)} \rangle_{n=1}^N \leftarrow$ run the expert N many times 2: $D_0 \leftarrow \langle (x, a) : \forall n, \forall (x, a, \ell) \in \tau_n^{(0)} \rangle$ // collect all pairs (same as supervised) **Requires interaction** $_{3:} f_0 \leftarrow \mathcal{A}(D_0)$ // train initial policy (multiclass classifier) on D_0 with expert! ₄: for $i = 1 \dots MaxIter$ do 5: $\langle \boldsymbol{\tau}_{n}^{(i)} \rangle_{n=1}^{N} \leftarrow \text{run policy } f_{i-1} \text{ N-many times}$ // trajectories by f_{i-1} 6: $D_i \leftarrow \langle (x, \operatorname{expert}(x)) : \forall n, \forall (x, a, \ell) \in \tau_n^{(i)} \rangle$ // collect data set // observations x visited by f_{i-1} // but actions according to the expert/ $_{7:} \quad f_i \leftarrow \mathcal{A}\left(\bigcup_{j=0}^i D_j\right)$ // train policy f_i on union of all data so far 8: end for 9: return $\langle f_0, f_1, \ldots, f_{\text{MaxIter}} \rangle$ // return collection of all learned policies

When is DAGGER used in practice?

- Interaction with expert is not always possible
- Classic use case
 - Expert = slow algorithm
 - Use DAGGER to learn a faster algorithm that imitates expert
 - Example: game playing where expert = brute-force search in simulation mode
- But also structured prediction

Sequence labeling via imitation learning

- What is the "expert" here?
 - Given a loss function (e.g., Hamming loss)
 - Expert takes action that minimizes long-term loss

$$x =$$
 "monsters eat tasty bunnies "
 $y =$ noun verb adj noun

- When expert can be computed exactly, it is called an oracle
- Key advantages
 - Can define features $\phi(x, \hat{y})$
 - No restriction to Markov features

Today's topics

- Improving on gold parse oracle
 - Research highlight: [Goldberg & Nivre, 2012]
- Imitation learning for structured prediction
 - CIML ch 18