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Today’s topics:
Addressing compounding error

• Improving on gold parse oracle
• Research highlight: [Goldberg & Nivre, 2012]

• Imitation learning for structured prediction
• CIML ch 18

http://www.aclweb.org/anthology/C12-1059


Improving the oracle
in transition-based dependency parsing

• Issues with oracle we’ve used so far
• Based on configuration sequence that produces gold tree

• What if there are multiple sequences for a single gold tree?

• How can we recover if the parser deviates from gold sequence?

• Goldberg & Nivre [2012] propose an improved oracle



Exercise:  which of these transition sequences 
produces the gold tree on the left?



Stack Buffer
Dependency 

Arcs
Arc from position j to position i, 

with dependency label l



Which of these transition sequences 
does the oracle algorithm produce?
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At test time, suppose the 4th transition predicted is 
SHIFT instead of RAIOBJ

What happens if we apply the oracle next?

SHIFT



Measuring distance from gold tree

• Labeled attachment loss: number of arcs in gold tree that are not 
found in the predicted tree

Loss = 3 Loss = 1
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Proposed solution: 
2 key changes to training algorithm

Any transition that can possibly 
lead to a correct tree is 

considered correct

Explore non-optimal transitions



Proposed solution: 
2 key changes to training algorithm



Defining the cost of a transition

• Loss difference between minimum loss trees achievable before and 
after transition

• Loss for trees nicely decomposes into losses for arcs
• We can compute transition cost by counting gold arcs that are no longer 

reachable after transition
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Imitation Learning
aka learning by demonstration 

• Sequential decision making problem
• At each point in time 𝑡

• Receive input information 𝑥𝑡

• Take action 𝑎𝑡

• Suffer loss 𝑙𝑡
• Move to next time step until time T

• Goal
• learn a policy function 𝑓(𝑥𝑡) = 𝑦𝑡

• That minimizes expected total loss over all trajectories enabled by f



Supervised Imitation Learning



Supervised Imitation Learning

Problem with 
supervised approach:
Compounding error



How can we train system to make better 
predictions off the expert path?

• We want a policy f that leads to good performance in configurations 
that f encounters

• A chicken and egg problem
• Can be addressed by iterative approach



DAGGER: simple & effective imitation 
learning via Data AGGregation

Requires interaction 
with expert!



When is DAGGER used in practice?

• Interaction with expert is not always possible

• Classic use case
• Expert = slow algorithm

• Use DAGGER to learn a faster algorithm that imitates expert

• Example: game playing where expert = brute-force search in simulation mode 

• But also structured prediction



Sequence labeling via imitation learning

• What is the “expert” here?
• Given a loss function (e.g., Hamming loss)
• Expert takes action that minimizes long-term loss

• When expert can be computed exactly, it is called an 
oracle

• Key advantages 
• Can define features
• No restriction to Markov features

Output prefix 
at time t

Loss of best reachable 
output starting with 

prefix  𝑦 ∘ 𝑎
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