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Machine Translation

* Translation system * 3 problems
* |nput: source sentence F

e Qutput: target sentence E

e Can be viewed as a function * Modeling
* how to define P(.)?

E =mt(F)
* Training/Learning
* how to estimate parameters from
* Statistical machine translation systems parallel corpora?

~

FE = argmax P(E | F;0)
E

e Search
* How to solve argmax efficiently?



Introduction to Neural Machine Translation

* Neural language models review

* Sequence to sequence models for MT
* Encoder-Decoder
e Sampling and search (greedy vs beam search)
* Practical tricks

* Sequence to sequence models for other NLP tasks



A feedforward neural 3-gram model
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A recurrent language model

(@) A single RNN time step (b) An unrolled RNN

tanh

tanh - h,

myy = M‘,et—l
no_ tanh(Wypmy + Whphy—1 +bp,) t > 1,
b 0 otherwise.

p; = softmax (W ht + by).



A recurrent language model

(a) A single RNN time step (b) An unrolled RNN

tanh

tanh - h,

(c) A simplified view
h, = RNN (= RNN > RNN —

S S

_ X, X, X,
my =M. ., |

ht — RNN(mt, ht—l)
p; = softmax(Wpsht + by).




Examples of RNN variants

* LSTMs

e Aim to address vanishing/exploding gradient issue

(a) A stacked RNN (b) With residual connectlons
e Stacked RNNs
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Training in practice: online

Algorithm 1 A fully online training algorithm

1: procedure ONLINE

2 for several epochs of training do

3 for each training example in the data do

4 Calculate gradients of the loss

5: Update the parameters according to this gradient
6 end for

7 end for

8: end procedure




Training in practice: batch

Algorithm 2 A batch learning algorithm

1: procedure BATCH

2 for several epochs of training do

3 for each training example in the data do

4: Calculate and accumulate gradients of the loss

5: end for

6 Update the parameters according to the accumulated gradient
7 end for

8: end procedure




Training In practice: minibatch
 Compromise between online and batch

 Computational advantages
* Can leverage vector processing instructions in modern hardware
* By processing multiple examples simultaneously

Operations w/o Minibatching
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Problem with minibatches: in l[anguage modeling,
examples don’t have the same length
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Fncoder-decoder model
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Encoder-decoder model
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Generating Output

* We have a model P(E|F), how can we generate translations?

e 2 methods

 Sampling: generate a random sentence according to probability distribution

* Argmax: generate sentence with highest probability



Ancestral Sampling

 Randomly generate words one
by one

while yi1 1= “</s>":
yi ~ Py | X, y1, ..., Y1)

e Until end of sentence symbol

* Done!



Greedy search

* One by one, pick single highest
probability word

* Problems
e Often generates easy words first

e Often prefers multiple common
words to rare words

while yj1 1= "</s>":

yj = argmax P(y; | X, y1, ..

., Yi1)
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log P(e,|F) log P(e,|Fe,) logP(e,|Fe,.e,)

Beam Search

Example with beam size b =2

We consider b top hypotheses at each time
step
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