Sequence to Sequence Models for Machine Translation

CMSC 723 / LING 723 / INST 725

Marine Carpuat
Machine Translation

• Translation system
 • Input: source sentence F
 • Output: target sentence E
 • Can be viewed as a function

\[\hat{E} = \text{mt}(F) \]

• Statistical machine translation systems

\[\hat{E} = \underset{E}{\text{argmax}} \ P(E \mid F; \theta) \]

• 3 problems

• Modeling
 • how to define \(P(.) \)?

• Training/Learning
 • how to estimate parameters from parallel corpora?

• Search
 • How to solve argmax efficiently?
Introduction to Neural Machine Translation

- Neural language models review
- Sequence to sequence models for MT
 - Encoder-Decoder
 - Sampling and search (greedy vs beam search)
 - Practical tricks
- Sequence to sequence models for other NLP tasks
A feedforward neural 3-gram model

\[m = \text{concat}(M_{.,e_{t-2}}, M_{.,e_{t-1}}) \]
\[h = \tanh(W_{mh}m + b_h) \]
\[s = W_{hs}h + b_s \]
\[p = \text{softmax}(s) \]
A recurrent language model

\[m_t = M_{eq} e_{t-1} \]

\[h_t = \begin{cases}
\tanh(W_{mh} m_t + W_{hh} h_{t-1} + b_h) & t \geq 1, \\
0 & \text{otherwise.}
\end{cases} \]

\[p_t = \text{softmax}(W_{hs} h_t + b_s). \]
A recurrent language model

\[m_t = M_{t:e_t-1} \]
\[h_t = \text{RNN}(m_t, h_{t-1}) \]
\[p_t = \text{softmax}(W_{hs}h_t + b_s). \]
Examples of RNN variants

• **LSTMs**
 • Aim to address vanishing/exploding gradient issue

• **Stacked RNNs**

• ...
Training in practice: online

Algorithm 1 A fully online training algorithm

1: procedure ONLINE
2: for several epochs of training do
3: for each training example in the data do
4: Calculate gradients of the loss
5: Update the parameters according to this gradient
6: end for
7: end for
8: end procedure
Training in practice: batch

Algorithm 2 A batch learning algorithm

1: procedure BATCH
2: for several epochs of training do
3: for each training example in the data do
4: Calculate and accumulate gradients of the loss
5: end for
6: Update the parameters according to the accumulated gradient
7: end for
8: end procedure
Training in practice: minibatch

- Compromise between online and batch

- Computational advantages
 - Can leverage vector processing instructions in modern hardware
 - By processing multiple examples simultaneously

Operations w/o Minibatching
\[
\begin{align*}
\text{tanh}(W x_1 + b) & \quad \text{tanh}(W x_2 + b) & \quad \text{tanh}(W x_3 + b)
\end{align*}
\]

Operations with Minibatching
\[
\begin{align*}
x_1 x_2 x_3 & \quad \text{concat} & \quad \text{broadcast} & \quad b
\end{align*}
\]
\[
\text{tanh}(W X + B)
\]
Problem with minibatches: in language modeling, examples don’t have the same length

- 3 tricks
 - Padding
 - Add </s> symbol to make all sentences same length
 - Masking
 - Multiply loss function calculated over padded symbols by zero
 - + sort sentences by length
Introduction to Neural Machine Translation

• Neural language models review

• Sequence to sequence models for MT
 • Encoder-Decoder
 • Sampling and search (greedy vs beam search)
 • Training tricks

• Sequence to sequence models for other NLP tasks
Encoder-decoder model
Encoder-decoder model

\[m_t^{(f)} = M_{:,f_t} \]

\[h_t^{(f)} = \begin{cases}
\text{RNN}^{(f)}(m_t^{(f)}, h_{t-1}^{(f)}) & t \geq 1, \\
0 & \text{otherwise}.
\end{cases} \]

\[m_t^{(e)} = M_{:,c_{t-1}} \]

\[h_t^{(e)} = \begin{cases}
\text{RNN}^{(e)}(m_t^{(e)}, h_{t-1}^{(e)}) & t \geq 1, \\
 h_t^{(f)} & \text{otherwise}.
\end{cases} \]

\[p_t^{(e)} = \text{softmax}(W_{hs} h_t^{(e)} + b_s) \]
Generating Output

• We have a model $P(E|F)$, how can we generate translations?

• 2 methods

 • **Sampling**: generate a random sentence according to probability distribution

 • **Argmax**: generate sentence with highest probability
Ancestral Sampling

- Randomly generate words one by one
- Until end of sentence symbol
- Done!

\[
\text{while } y_{j-1} \neq "<\text{s}>": \\
y_j \sim P(y_j \mid X, y_1, \ldots, y_{j-1})
\]
Greedy search

• One by one, pick single highest probability word

• Problems
 • Often generates easy words first
 • Often prefers multiple common words to rare words

```
while y_{j-1} != "</s>":
y_j = \arg\max P(y_j | X, y_1, \ldots, y_{j-1})
```
Greedy Search

Example
Beam Search

Example with beam size b = 2

We consider b top hypotheses at each time step.
Introduction to Neural Machine Translation

• Neural language models review

• Sequence to sequence models for MT
 • Encoder-Decoder
 • Sampling and search (greedy vs beam search)
 • Practical tricks

• Sequence to sequence models for other NLP tasks