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A recurrent language model

(@) A single RNN time step (b) An unrolled RNN
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A recurrent language model

(a) A single RNN time step (b) An unrolled RNN
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Encoder-decoder model
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Generating Output

* We have a model P(E|F), how can we generate translations?

e 2 methods

 Sampling: generate a random sentence according to probability distribution

* Argmax: generate sentence with highest probability



Training
e Same as for RNN language modeling

* Loss function
* Negative log-likelihood of training data
 Total loss for one example (sentence) = sum of loss at each time step (word)

* BackPropagation Through Time (BPTT)

* Gradient of loss at time step t is propagated through the network all the way
back to 15t time step



Note that training loss differs from
evaluation metric (BLEU)

N-gram overlap between machine translation output and reference translation
Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)
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Typically computed over the entire corpus, not single sentences



Other encoder structures:
Bidirectional encoder
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Motivation:

- Take 2 hidden vectors from source
encoder

- Combine them into a vector of size
required by decoder



A few more tricks: addressing length bias

* Default models tend to generate short sentences

* Solutions:
* Prior probability on sentence length

A

FE = argmax log P(|E| | |F|) +log P(E | F).
E

* Normalize by sentence length

A

E = argmax log P(E | F)/|F)|.
E



A few more tricks: ensembling

* Combine predictions from
multiple models

* Methods

* Linear or log-linear interpolation

* Parameter averaging
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Beyond MT: Encoder-Decoder can be used as
Conditioned Language Models to generate text Y
according to some specification X

Input X Qutput Y (Text)
Structured Data ~ NL Description
English Japanese
Document Short Description
Utterance Response
Image Text

Speech Transcript
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Problem with previous encoder-decoder
model

* Long-distance dependencies remain a problem

* A single vector represents the entire source sentence
* No matter its length

* Solution: attention mechanism
* An example of incorporating inductive bias in model architecture



Attention model intuition

* Encode each word in source sentence into a vector

* When decoding, perform a linear combination of these vectors,
weighted by “attention weights”

* Use this combination when predicting next word

[Bahdanau et al. 2015]



Attention model
Source word representations

* We can use representations Tf(-f) = RNN(embed(f;), h _>§f)1)
from bidirectional RNN encoder %g_f) RNN (embed(f;), %E{“H
R — (R, )
j Y

e And concatenate them in a

matrix HY) = concat_col(hgf), o hfﬁ)



Attention model
Create a source context vector

e Attention vector:
* Entries between 0 and 1

* Interpreted as weight given to
each source word when
generating output at time step t

Ct = H(f)at

Context vector Attention vector




Attention model
llustrating attention weights
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Attention model
How to calculate attention scores
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Attention model
Various ways of calculating attention score

* Dot duct
or PTOSHE 1) p©) = ROTRO

attn_score(h;

e Bilinear function

attn_score(h(f) h(e)) — h(f)TW h(e)

* Multi-layer perceptron (original
formulation in Bahdanau et al.)

attn_score(h( €) h(f)) — waQtaHh(Wal[hge)Shgﬁ])



Advantages of attention

* Helps illustrate/interpret translation decisions

* Can help insert translations for OOV
* By copying or look up in external dictionary

e Can incorporate linguistically motivated priors in model



Attention extensions
An active area of research

e Attend to multiple sentences (Zoph et al. 2015)
e Attend to a sentence and an image (Huang et al. 2016)

* Incoprorate bias from alignment models
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