Phrase-Based Machine Translation

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT marine@cs.umd.edu

- The **noisy channel model** decomposes machine translation into two independent subproblems
 - Language modeling
 - Translation modeling / Alignment

Word Alignment with IBM Models 1, 2

- Probabilistic models with strong independence assumptions
- Alignments are hidden variables
 - unlike words which are observed
 - require **unsupervised learning** (EM algorithm)
- Word alignments often used as building blocks for more complex translation models
 - E.g., phrase-based machine translation

PHRASE-BASED MODELS

Phrase-based models

 Most common way to model P(F|E) nowadays (instead of IBM models)
 Start position of

$$P(F|E) = \prod_{i=1}^{I} \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1})$$
 End position of f_(i-1)

Probability of two consecutive English phrases being separated by a particular span in French

Phrase alignments are derived This means that the IBM model represents P(Spanish [English)

green

Get high confidence alignment links by intersecting IBM word alignments from both directions

Phrase alignments are derived from word alignments

Phrase alignments are derived from word alignments

Extract phrases that are **consistent** with word alignment

Phrase Translation Probabilities

• Given such phrases we can get the required statistics for the model from

$$\phi(\bar{f}, \bar{e}) = \frac{\operatorname{count}(\bar{f}, \bar{e})}{\sum_{\bar{f}} \operatorname{count}(\bar{f}, \bar{e})}$$

Phrase-based Machine Translation

$$\prod_{i\in S} \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1}) P(E)$$

DECODING

Decoding for phrase-based MT

- Basic idea
 - search the space of possible English translations in an efficient manner.
 - According to our model

translation model language model

$$\hat{E} = \underset{E \in \text{English}}{\operatorname{argmax}} P(F|E) \qquad P(E)$$

$$\prod \phi(\bar{f}_i, \bar{e}_i) d(a_i - b_{i-1}) P(E)$$

 $i \in S$

Decoding as Search

- Starting point: null state. No French content covered, no English included.
- We'll drive the search by
 - Choosing French word/phrases to "cover",
 - Choosing a way to cover them
- Subsequent choices are pasted left-to-right to previous choices.
- Stop: when all input words are covered.

Maria	no	dio	una	bofetada	а	la	bruja	verde
-------	----	-----	-----	----------	---	----	-------	-------

Maria	no	dio	una	bofetada	а	la	bruja	verde
Mary								

Maria	no	dio	una	bofetada	а	la	bruja	verde
Mary	did not							

Maria	no	dio	una	bofetada	а	la	bruja	verde
Mary	Did not		slap					

Maria	no	dio	una	bofetada	а	la	bruja	verde
Mary	Did not		slap		th	ne		

Maria	no	dio	una	bofetada	а	la	bruja	verde
Mary	Did not		slap		ť	ne	green	

Maria	no	dio	una	bofetada	а	la	bruja	verde
Mary	Did not		slap		ť	ne	green	witch

Maria	no	dio	una	bofetada	а	la	bruja	verde
-------	----	-----	-----	----------	---	----	-------	-------

Mary	did not	slap	the	green	witch

• In practice: we need to incrementally pursue a large number of paths.

 Solution: heuristic search algorithm called "multi-stack beam search"

Space of possible English translations given phrase-based model

Maria	no	dió	una	bofetada	а	la	bruja	verde
Mary	not did not	give	<u>a</u>	slap	to	the	witch	green
	no		slap			he	green	
	did no	t give			to			
					th	e		
	slap					the w	/itch	

Stack decoding: a simplified view

function STACK DECODING(source sentence) returns target sentence

initialize stack with a null hypothesis

loop do

pop best hypothesis h off of stack **if** h is a complete sentence, **return** h **for each** possible expansion h' of hassign a score to h'push h' onto stack

Note: here "stack" = priority queue

Three stages of stack decoding

"multi-stack beam search"

function BEAM SEARCH STACK DE

initialize hypothesisStack[0..nf] push initial null hypothesis on hyp for $i \leftarrow 0$ to *nf-1* One stack per number of French words covered: so that we make apples-to-apples comparisons when pruning

Beam-search pruning **for each stack**: prune high cost states (those "outside the beam")

"multi-stack beam search"

function BEAM SEARCH STACK DECODER(source sentence) returns target sentence
initialize hypothesisStack[0..nf]
push initial null hypothesis on hypothesisStack[0]
for i←0 to nf-1
 for each hyp in hypothesisStack[i]
 for each new_hyp that can be derived from hyp
 nf_new_hyp ← number of foreign words covered by new_hyp
 add new_hyp to hypothesisStack[nf_new_hyp]
 prune hypothesisStack[nf_new_hyp]
find best hypothesis best_hyp in hypothesisStack[nf]
return best path that leads to best_hyp via backtrace

Cost = current cost + future cost

- Future cost = cost of translating remaining words in the French sentence
- Exact future cost = minimum probability of all remaining translations
 - Too expensive to compute!
- Approximation
 - Find sequence of English phrases that has the minimum product of language model and translation model costs

Recombination

- Two distinct hypothesis paths might lead to the same translation hypotheses
 - Same number of source words translated
 - Same output words
 - Different scores
- Recombination
 - Drop worse hypothesis

Recombination

- Two distinct hypothesis paths might lead to hypotheses that are indistinguishable in subsequent search
 - Same number of source words translated
 - Same last 2 output words (assuming 3-gram LM)
 - Different scores
- Recombination
 - Drop worse hypothesis

Complexity Analysis

- Time complexity of decoding as described so far O(max stack size x sentence length^2)
 - O(max stack size x number of ways to expand hyps. x sentence length)

Reordering Constraints

Idea: limit reordering to maximum reordering distance

Typically: 5 to 8 words

- Depending on language pair
- Empirically: larger limit hurts translation quality

Resulting complexity: **O(max stack size x sentence length)**

 because we limit reordering distance, so that only a constant number of hypothesis expansions are considered

RECAP

- The **noisy channel model** decomposes machine translation into two independent subproblems
 - Language modeling
 - Translation modeling / Alignment

Phrase-Based Machine Translation

• Phrase-translation dictionary

Phrase-Based Machine Translation

- A simple model of translation
 - Phrase translation dictionary ("phrase-table")
 - Extract all phrase pairs consistent with given alignment
 - Use relative frequency estimates for translation probabilities
 - Distortion model
 - Allows for reorderings

Decoding in Phrase-Based Machine Translation

- Approach: Heuristic search
- With several strategies to reduce the search space
 - Pruning
 - Recombination
 - Reordering constraints

What are the pros and cons of phrase-based vs. neural MT?