Announcements

• Project #6 is due tomorrow
 • Regarding equals for the Entree class... Do it the old (wrong) way:
 public boolean equals(Entree x) {...}
Linear Search

- Demonstration: Linear Search

- What shape will the runtime graph be?

- Roughly speaking, what happens to the runtime as the size of the dataset doubles?

- We classify all algorithms with this shape as “linear” algorithms.
Binary Search

• Demonstration: Binary Search

• What shape will the runtime graph be?

• What happens to the runtime as the size of the dataset doubles?

• We classify all algorithms with this shape as “logarithmic” algorithms.
Example: “Nervous Search”

1. Look in the first box.
2. If not there, start from the beginning and look through the first two boxes.
3. If not there, start from the beginning and look through the first three boxes.
4. Etc.

• Is this a good way to do a search?
• What shape will the runtime graph be?
• What happens to the runtime as the size of the dataset doubles?
• We classify all algorithms with this shape as “Quadratic” algorithms.
Comparing Algorithms

Suppose that on a fixed set of data:

- Person 1 will run a linear algorithm (A)
- Person 2 will run a quadratic algorithm (B)

- Can we say which one will run faster?
- What *can* we say with certainty about the performance of A vs. B?
- Let’s do the same analysis but comparing linear with logarithmic.
Intuition for Big-O Notation

We say an algorithm is...

- $O(n)$ if it is linear (or faster)
- $O(\log n)$ if it is logarithmic (or faster)
- $O(n^2)$ if it is quadratic (or faster)
Examples of Big-O “Categories”

O(1)
O(log n)
O(n)
O(n log n)
O(n^2)
O(n^3)
...
O(n^{100000000})
...
O(2^n)
O(72^n)
...
O(n!)
O(n^n)

Observations:
• There are always categories “between”
 e.g.: What’s between O(1) and O(log n)?
• O(1) is the fastest, but there is no slowest
• Recall: When comparing performance of two
 algorithms from different categories, what can we
 say about performance?
• Why is the division between green/red in that spot?
• Why is it called “asymptotic” complexity?
Examples

What is the asymptotic complexity (Big-O) for these?

• Linear Search
• Binary Search
• Coloring in every square of a Flag of height n
• Count enemies remaining on n by n battlefield
• Find closest enemy within radius r on an n by n battlefield