
CMSC 131
Fall 2018

Recall: Exception Handling

• When are exceptions thrown?

Example:

if (internet is down) {
 throw new IOException(“No network
connection”);
}

• What happens when the exception is thrown?

• What does a “handler” look like?

Example:

try {
 weather = downloadWeatherInfo();
} catch(IOException e) {
 weather = lookOutWindowAndSeeIfItsRaining();
}

Practical Examples

Have we seen examples where exception throwing would have made sense?

• Student class (spending a token when you have none)

if(tokenLevel == 0) {
 throw new illegalStateException(“No tokens present”);

}

• FlagMaker (error flag is stupid)

if(countryCode < 1 || countryCode > 12) {
 throw new illegalArgumentException(countryCode + “ is

 not a valid
country.”);

 }

Catching Multiple Types of Exceptions

You can catch more than one kind of exception:

try {
 <put troublesome code here>
} catch (NullPointerException e) {
 <handler here>
} catch (ArithmeticException e) {
 <another handler here>
} catch (IOException e) {
 <another one here>
}

Finally block

Optional. Put code in finally block that is “mission critical”.

try {
 <put troublesome code here>
} catch (NullPointerException e) {
 <handler here>
} catch (ArithmeticException e) {
 <another handler here>
} catch (IOException e) {
 <another one here>
} finally {
 <put something here that should ALWAYS run>
}

Finally block ALWAYS runs

Once try block has begun, the finally block will run…

• When no exceptions are thrown

• When an exception is thrown and caught locally

• When an exception is thrown but NOT caught locally

• When method is terminated with return

Collections

Real world programs process huge quantities of data

How can we store a billion user names?

• Make a billion individual variables?

We need a way to use a single variable to store a
(theoretically) unbounded number of items.

1. Java Collections Framework (later)

2. Arrays (today)

Arrays of primitives

An array is a sequence of values stored contiguously.

Let’s explain and draw memory diagram:

int[] a;
a = new int[4];

How do we access each value individually?

Elements are indexed (0-based).

Examples of expressions using indexing.

Details

• Values in the array must all be the same type

• Arrays are objects, so they go on the heap.
• Arrays are always initialized with default values

• Indexing is 0-based

Processing Arrays

Arrays have a length field:

 arr.length

Standard idiom for processing array:

for (int i = 0; i < arr.length; i++) {
 process a[i]
}

Examples

ArrayExamples.java

twoDArr.java

