
Java Iterators

!2

Motivation
■ We often want to access every item in a

collection of items
❑ We call this traversing or iterating over every

item
■ Example: array 

 for (int i = 0; i < array.length(); i++) 
 /* do something to array[i] */
❑ This is straighforward because we know exactly

how an array works!

!3

Motivation

■ What if we want to traverse a collection of
objects?
❑ Its underlying implementation may not be known to

us
■ Java provides an interface for stepping

through all elements in any collection, called
an iterator

Reminder: Iterating through ArrayList
■ Iterating through an ArrayList of Strings:

for (int i = 0; i < list.size(); i++) {
 String s = list.get(i);
 //do something with s
}

■ Alternative:
while (list.hasNext()) {
 String s = list.next();
}

This syntax of iteration is generic and applies to any Java
iterable.

Iterators

■ An iterator is a mechanism used to step
through the elements of a collection one by
one
❑ Each element is “delivered ” exactly once

■ Example
❑ Iterate through an ordered list and print each

element in turn

!6

The Java Iterator Interface

■ The Java API has a generic interface called
Iterator<T> that specifies what methods are
required of an iterator
❑ public boolean hasNext();  

returns true if there are more elements to iterate
over

❑ public T next();  
returns the next element

❑ public void remove();  
removes the last element returned by the iterator
(optional operation)

■ It is in the java.util package of the Java API

Using an iterator
ArrayIterator<Integer> itr = new
 ArrayIterator<Integer>(array);
while (itr.hasNext()){
 Integer element = itr.next();
}

Example: an array iterator
public class ArrayIterator<T> implements Iterator<T>{
 private int current;
 private T[] array;
 public ArrayIterator (T [] array){
 this.array = array;
 this.current = 0;
 }
 public boolean hasNext(){
 return (current < array.length);
 }
 public T next(){
 if (!hasNext())
 throw new NoSuchElementException();
 current++;
 return array[current - 1];
 }
}

The Iterable interface

Instead of:
while (list.hasNext()) {
 String s = list.next();
}

We can do:
for (String s : list) {
 //do something with s
}

That’s because a list is iterable

The Iterable interface

■ The Java API has a generic interface called
Iterable<T> that allows an object to be the target
of a “foreach” statement
❑ public Iterator<T> iterator();  

returns an iterator
■ Why do we need Iterable?

❑ An Iterator can only be used once, Iterables can
be the subject of “foreach” multiple times.

Why use Iterators?

■ Traversing through the elements of a
collection is very common in programming,
and iterators provide a uniform way of doing
so.

■ Advantage? Using an iterator, we don’t need
to know how the data structure is
implemented!

!11

