
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON
PREM SAGGAR

Lecture #2 – 08/29/2018

CMSC320
Mondays & Wednesdays
2:00pm – 3:15pm

Today!

ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2018/cmsc320
• 103 have registered already
• 122 have not registered yet

If you were on Piazza, you’d know …
• Project 0 is out! It is due next Wednesday evening.
• Link: https://github.com/JohnDickerson/cmsc320-fall2018/tree/master/project0

We’ll also link some reading for the week soon!
• First quiz will be due Wednesday at noon.

2

https://github.com/umddb/cmsc320-fall2018/tree/master/project0

THE DATA LIFECYCLE

3

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

TODAY’S LECTURE

4

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

BUT FIRST, SNAKES!
Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative, and
widely used scripting language.
• Interpreted: instructions executed without being compiled into

(virtual) machine instructions*

• Dynamically-typed: verifies type safety at runtime

• High-level: abstracted away from the raw metal and kernel

• Garbage-collected: memory management is automated
• OOFI: you can do bits of OO, F, and I programming

Not the point of this class!
• Python is fast (developer time), intuitive, and used in industry!

5

*you can compile Python source, but it’s not required

THE ZEN OF PYTHON
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren't special enough to break the rules …
• … although practicality beats purity.
• Errors should never pass silently …
• … unless explicitly silenced.

6

Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING
Literate code contains in one document:
• the source code;

• text explanation of the code; and

• the end result of running the code.

Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering
• Necessary for data science!

• Many choices made need textual explanation, ditto results.

Stuff you’ll be using in Project 0 (and beyond)!

7

10-MINUTE PYTHON
PRIMER
Define a function:

Python is whitespace-delimited
Define a function that returns a tuple:

8

def my_func(x, y):
if x > y:

return x
else:

return y

def my_func(x, y):
return (x-1, y+2)

(a, b) = my_func(1, 2)

a = 0; b = 4

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING
len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

https://docs.python.org/3/library/functions.html

len([‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0])

7

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate([“311”, “320”, “330”])

[(0, “311”), (1, “320”), (2, “330”)]

9

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER
map: apply a function to a sequence or iterable

filter: returns a list of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.

10

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]

PYTHONIC
PROGRAMMING
Basic iteration over an array in Java:

Direct translation into Python:

A more “Pythonic” way of iterating:

idx = 0
while idx < len(arr):

print(arr[idx]); idx += 1

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println(arr[idx]);
}

for element in arr:
print(element)

11

LIST COMPREHENSIONS
Construct sets like a mathematician!

• P = { 1, 2, 4, 8, 16, …, 216 }

• E = { x | x in ℕ and x is odd and x < 1000 }

Construct lists like a mathematician who codes!

Very similar to map, but:

• You’ll see these way more than map in the wild

• Many people consider map/filter not “pythonic”

• They can perform differently (map is “lazier”)

1
2

P = [2**x for x in range(17)]

E = [x for x in range(1000) if x % 2 != 0]

EXCEPTIONS
Syntactically correct statement throws an exception:
• tweepy (Python Twitter API) returns “Rate limit exceeded”

• sqlite (a file-based database) returns IntegrityError

13

print('Python', python_version())

try:
cause_a_NameError

except NameError as err:
print(err, '-> some extra text')

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” à print(“function”)
• 1/2 = 0 à 1/2 = 0.5 and 1//2 = 0
• ASCII str default à default Unicode
Namespace ambiguity fixed:

i = 1
[i for i in range(5)]
print(i) # ????????

14

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:
• Python 3 introduces features that will throw runtime errors in

Python 2 (e.g., with statements)

• _future_ module incrementally brings 3 functionality into 2

• https://docs.python.org/2/library/__future__.html

from _future_ import division
from _future_ import print_function
from _future_ import please_just_use_python_3

15

PYTHON VS R (FOR
DATA SCIENTISTS)
There is no right answer here!
• Python is a “full”

programming language –
easier to integrate with
systems in the field

• R has a more mature set of
pure stats libraries …

• … but Python is catching up
quickly …

• … and is already ahead
specifically for ML.

You will see Python more in the
tech industry.

16

EXTRA RESOURCES
Plenty of tutorials on the web:
• https://www.learnpython.org/

Work through Project 0, which will take you through some
baby steps with Python and the Pandas library:
• (We’ll also post some readings soon.)

Come hang out at office hours (or chat with me privately)
• All office hours will be on the website/Piazza very soon.

• Will have coverage MTWThF.

17

18

TODAY’S LECTURE

19

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

with

Thanks: Zico Kolter’s 15-388

GOTTA CATCH ‘EM ALL
Five ways to get data:
• Direct download and load from local storage
• Generate locally via downloaded code (e.g., simulation)
• Query data from a database (covered in a few lectures)
• Query an API from the intra/internet
• Scrape data from a webpage

20

Covered today.

WHEREFORE ART
THOU, API?
A web-based Application Programming Interface (API) like
we’ll be using in this class is a contract between a server and
a user stating:

“If you send me a specific request, I will return some
information in a structured and documented format.”

(More generally, APIs can also perform actions, may not be
web-based, be a set of protocols for communicating between
processes, between an application and an OS, etc.)

21

“SEND ME A SPECIFIC
REQUEST”
Most web API queries we’ll be doing will use HTTP requests:
• conda install –c anaconda requests=2.12.4

22

http://docs.python-requests.org/en/master/

r = requests.get('https://api.github.com/user',
auth=('user', 'pass'))

200

r.status_code

r.headers[‘content-type’]

‘application/json; charset=utf8’

r.json()

{u'private_gists': 419, u'total_private_repos': 77, ...}

HTTP REQUESTS
https://www.google.com/?q=cmsc320&tbs=qdr:m

HTTP GET Request:
GET /?q=cmsc320&tbs=qdr:m HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1

23

??????????

params = { “q”: “cmsc320”, “tbs”: “qdr:m” }
r = requests.get(“https://www.google.com”,

params = params)

*be careful with https:// calls; requests will not verify SSL by default

RESTFUL APIS
This class will just query web APIs, but full web APIs typically
allow more.

Representational State Transfer (RESTful) APIs:

• GET: perform query, return data

• POST: create a new entry or object

• PUT: update an existing entry or object
• DELETE: delete an existing entry or object

Can be more intricate, but verbs (“put”) align with actions

24

QUERYING A RESTFUL API
Stateless: with every request, you send along a
token/authentication of who you are

GitHub is more than a GETHub:
• PUT/POST/DELETE can edit your repositories, etc.

• Try it out: https://github.com/settings/tokens/new

25

token = ”super_secret_token”
r = requests.get(“https://github.com/user”,

params={”access_token”: token})
print(r.content)

{"login":”JohnDickerson","id":472985,"avatar_url":"ht…

AUTHENTICATION
AND OAUTH
Old and busted:

New hotness:
• What if I wanted to grant an app access to, e.g., my Facebook

account without giving that app my password?

• OAuth: grants access tokens that give (possibly incomplete)
access to a user or app without exposing a password

26

r = requests.get(“https://api.github.com/user”,
auth=(“JohnDickerson”, “ILoveKittens”))

“… I WILL RETURN INFORMATION
IN A STRUCTURED FORMAT.”
So we’ve queried a server using a well-formed GET request
via the requests Python module. What comes back?

General structured data:
• Comma-Separated Value (CSV) files & strings

• Javascript Object Notation (JSON) files & strings

• HTML, XHTML, XML files & strings

Domain-specific structured data:
• Shapefiles: geospatial vector data (OpenStreetMap)

• RVT files: architectural planning (Autodesk Revit)

• You can make up your own! Always document it.

27

CSV FILES IN PYTHON
Any CSV reader worth anything can parse files with any
delimiter, not just a comma (e.g., “TSV” for tab-separated)
1,26-Jan,Introduction,—,"pdf, pptx",Dickerson,
2,31-Jan,Scraping Data with Python,Anaconda's Test Drive.,,Dickerson,
3,2-Feb,"Vectors, Matrices, and Dataframes",Introduction to pandas.,,Dickerson,
4,7-Feb,Jupyter notebook lab,,,"Denis, Anant, & Neil",
5,9-Feb,Best Practices for Data Science Projects,,,Dickerson,

Don’t write your own CSV or JSON parser

(We’ll use pandas to do this much more easily and efficiently)

28

import csv
with open(“schedule.csv”, ”rb”) as f:

reader = csv.reader(f, delimiter=“,”, quotechar=’”’)
for row in reader:

print(row)

JSON FILES & STRINGS
JSON is a method for serializing objects:
• Convert an object into a string (done in Java in 131/132?)

• Deserialization converts a string back to an object

Easy for humans to read (and sanity check, edit)
Defined by three universal data structures

29

Images from: http://www.json.org/

Python dictionary, Java

Map, hash table, etc …

Python list, Java array,

vector, etc …

Python string, float, int,

boolean, JSON object,

JSON array, …

JSON IN PYTHON
Some built-in types: “Strings”, 1.0, True, False, None
Lists: [“Goodbye”, “Cruel”, “World”]
Dictionaries: {“hello”: “bonjour”, “goodbye”, “au
revoir”}

Dictionaries within lists within dictionaries within lists:
[1, 2, {“Help”:[

“I’m”, {“trapped”: “in”},
“CMSC320”
]}]

30

JSON FROM TWITTER

31

GET https://api.twitter.com/1.1/friends/list.json?cursor=-
1&screen_name=twitterapi&skip_status=true&include_user_entitie
s=false

{
"previous_cursor": 0,
"previous_cursor_str": "0",
"next_cursor": 1333504313713126852,
"users": [{

"profile_sidebar_fill_color": "252429",
"profile_sidebar_border_color": "181A1E",
"profile_background_tile": false,
"name": "Sylvain Carle",
"profile_image_url":

"http://a0.twimg.com/profile_images/2838630046/4b82e286a659fae310012520f4f7
56bb_normal.png",

"created_at": "Thu Jan 18 00:10:45 +0000 2007", …

PARSING JSON IN
PYTHON
Repeat: don’t write your own CSV or JSON parser
• https://news.ycombinator.com/item?id=7796268

• rsdy.github.io/posts/dont_write_your_json_parser_plz.html

Python comes with a fine JSON parser

32

import json

r = requests.get(
“https://api.twitter.com/1.1/statuses/user_timeline.jso
n?screen_name=JohnPDickerson&count=100”, auth=auth)

data = json.loads(r.content)

json.load(some_file) # loads JSON from a file
json.dump(json_obj, some_file) # writes JSON to file
json.dumps(json_obj) # returns JSON string

XML, XHTML, HTML
FILES AND STRINGS
Still hugely popular online, but JSON has essentially
replaced XML for:
• Asynchronous browser ßà server calls
• Many (most?) newer web APIs
XML is a hierarchical markup language:
<tag attribute=“value1”>

<subtag>
Some content goes here

</subtag>
<openclosetag attribute=“value2” />

</tag>

You probably won’t see much XML, but you will see plenty of
HTML, its substantially less well-behaved cousin …

33

Example XML from: Zico Kolter

SCRAPING HTML IN
PYTHON
HTML – the specification – is fairly pure
HTML – what you find on the web – is horrifying
We’ll use BeautifulSoup:
• conda install -c asmeurer beautiful-soup=4.3.2

34

import requests
from bs4 import BeautifulSoup

r = requests.get(
“https://cs.umd.edu/class/fall2018/cmsc320/”)

root = BeautifulSoup(r.content)
root.find(“div”, id=“schedule”)\

.find(“table”)\ # find all schedule

.find(“tbody”).findAll(“a”) # links for CMSC320

BUILDING A WEB
SCRAPER IN PYTHON
Totally not hypothetical situation:
• You really want to learn about data science, so you choose to

download all of last semester’s CMSC320 lecture slides to
wallpaper your room …

• … but you now have carpal tunnel syndrome from clicking
refresh on Piazza last night, and can no longer click on the
PDF and PPTX links.

Hopeless? No! Earlier, you built a scraper to do this!

Sort of. You only want PDF and PPTX files, not links to other
websites or files.

35

lnks = root.find(“div”, id=“schedule”)\
.find(“table”)\ # find all schedule
.find(“tbody”).findAll(“a”) # links for CMSC320

REGULAR
EXPRESSIONS
Given a list of URLs (strings), how do I find only those strings
that end in *.pdf or *.pptx?

• Regular expressions!
• (Actually Python strings come with a built-in endswith

function.)

What about .pDf or .pPTx, still legal extensions for PDF/PPTX?

• Regular expressions!
• (Or cheat the system again: built-in string lower function.)

36

“this_is_a_filename.pdf”.endswith((“.pdf”, “.pptx”))

“tHiS_IS_a_FileNAme.pDF”.lower().endswith(
(“.pdf”, “.pptx”))

37

REGULAR EXPRESSIONS
Used to search for specific elements, or groups of elements,
that match a pattern

38

import re

Find the index of the 1st occurrence of “cmsc320”
match = re.search(r”cmsc320”, text)
print(match.start())

Does start of text match “cmsc320”?
match = re.match(r”cmsc320”, text)

Iterate over all matches for “cmsc320” in text
for match in re.finditer(r”cmsc320”, text):

print(match.start())

Return all matches of “cmsc320” in the text
match = re.findall(r”cmsc320”, text)

MATCHING MULTIPLE
CHARACTERS
Can match sets of characters, or multiple and more elaborate
sets and sequences of characters:
• Match the character ‘a’: a

• Match the character ‘a’, ‘b’, or ‘c’: [abc]

• Match any character except ‘a’, ‘b’, or ‘c’: [^abc]

• Match any digit: \d (= [0123456789] or [0-9])
• Match any alphanumeric: \w (= [a-zA-Z0-9_])

• Match any whitespace: \s (= [\t\n\r\f\v])

• Match any character: .

Special characters must be escaped: .^$*+?{}\[]|()

39

Thanks to: Zico Kolter

MATCHING SEQUENCES AND
REPEATED CHARACTERS
A few common modifiers (available in Python and most other
high-level languages; +, {n}, {n,} may not):
• Match character ‘a’ exactly once: a
• Match character ‘a’ zero or once: a?
• Match character ‘a’ zero or more times: a*

• Match character ‘a’ one or more times: a+
• Match character ‘a’ exactly n times: a{n}
• Match character ‘a’ at least n times: a{n,}

Example: match all instances of “University of <somewhere>” where
<somewhere> is an alphanumeric string with at least 3 characters:
• \s*University\sof\s\w{3,}

40

COMPILED REGEXES
If you’re going to reuse the same regex many times, or if you
aren’t but things are going slowly for some reason, try
compiling the regular expression.
• https://blog.codinghorror.com/to-compile-or-not-to-compile/

Interested? CMSC330, CMSC430, CMSC452, talk to me.

41

Compile the regular expression “cmsc320”
regex = re.compile(r”cmsc320”)

Use it repeatedly to search for matches in text
regex.match(text) # does start of text match?
regex.search(text) # find the first match or None
regex.findall(text) # find all matches

DOWNLOADING A
BUNCH OF FILES

42

import re
import requests
from bs4 import BeautifulSoup
try:

from urllib.parse import urlparse
except ImportError:

from urlparse import urlparse

Import the modules

HTTP GET request sent to the URL url
r = requests.get(url)

Use BeautifulSoup to parse the GET response
root = BeautifulSoup(r.content)
lnks = root.find("div", id="schedule")\

.find("table")\

.find("tbody").findAll("a")

Get some HTML via HTTP

DOWNLOADING A
BUNCH OF FILES

43

Cycle through the href for each anchor, checking
to see if it's a PDF/PPTX link or not
for lnk in lnks:

href = lnk['href']

If it's a PDF/PPTX link, queue a download
if href.lower().endswith(('.pdf', '.pptx')):

Parse exactly what you want

urld = urlparse.urljoin(url, href)
rd = requests.get(urld, stream=True)

Write the downloaded PDF to a file
outfile = path.join(outbase, href)
with open(outfile, 'wb') as f:

f.write(rd.content)

Get some more data?!

NEXT LECTURE

44

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

NEXT CLASS:
NUMPY, SCIPY, AND DATAFRAMES

45

