
INTRODUCTION TO 
DATA SCIENCE
JOHN P DICKERSON
PREM SAGGAR

Lecture #2 – 08/29/2018

CMSC320
Mondays & Wednesdays
2:00pm – 3:15pm

Today!



ANNOUNCEMENTS
Register on Piazza: piazza.com/umd/fall2018/cmsc320
• 103 have registered already
• 122 have not registered yet

If you were on Piazza, you’d know …
• Project 0 is out! It is due next Wednesday evening.
• Link: https://github.com/JohnDickerson/cmsc320-fall2018/tree/master/project0

We’ll also link some reading for the week soon!
• First quiz will be due Wednesday at noon.
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https://github.com/umddb/cmsc320-fall2018/tree/master/project0


THE DATA LIFECYCLE
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TODAY’S LECTURE
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BUT FIRST, SNAKES!
Python is an interpreted, dynamically-typed, high-level, 
garbage-collected, object-oriented-functional-imperative, and 
widely used scripting language.
• Interpreted: instructions executed without being compiled into 

(virtual) machine instructions*

• Dynamically-typed: verifies type safety at runtime

• High-level: abstracted away from the raw metal and kernel

• Garbage-collected: memory management is automated
• OOFI: you can do bits of OO, F, and I programming

Not the point of this class!
• Python is fast (developer time), intuitive, and used in industry!
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*you can compile Python source, but it’s not required



THE ZEN OF PYTHON 
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren't special enough to break the rules …
• … although practicality beats purity.
• Errors should never pass silently …
• … unless explicitly silenced.
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Thanks: SDSMT ACM/LUG



LITERATE 
PROGRAMMING
Literate code contains in one document:
• the source code;

• text explanation of the code; and

• the end result of running the code.

Basic idea: present code in the order that logic and flow of 
human thoughts demand, not the machine-needed ordering
• Necessary for data science!

• Many choices made need textual explanation, ditto results.

Stuff you’ll be using in Project 0 (and beyond)!

7



10-MINUTE PYTHON 
PRIMER
Define a function:

Python is whitespace-delimited
Define a function that returns a tuple:
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def my_func(x, y):
if x > y:

return x
else:

return y

def my_func(x, y):
return (x-1, y+2)

(a, b) = my_func(1, 2)

a = 0; b = 4



USEFUL BUILT-IN FUNCTIONS: 
COUNTING AND ITERATING 
len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

https://docs.python.org/3/library/functions.html

len( [‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0] )
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list( range(10) )

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate( [“311”, “320”, “330”] )

[(0, “311”), (1, “320”), (2, “330”)]
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USEFUL BUILT-IN FUNCTIONS: 
MAP AND FILTER
map: apply a function to a sequence or iterable

filter: returns a list of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.
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arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]



PYTHONIC 
PROGRAMMING
Basic iteration over an array in Java:

Direct translation into Python:

A more “Pythonic” way of iterating:

idx = 0
while idx < len(arr):

print( arr[idx] ); idx += 1

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println( arr[idx] );
}

for element in arr:
print( element )
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LIST COMPREHENSIONS
Construct sets like a mathematician!

• P = { 1, 2, 4, 8, 16, …, 216 }

• E = { x | x in ℕ and  x is odd  and  x < 1000 }

Construct lists like a mathematician who codes!

Very similar to map, but:

• You’ll see these way more than map in the wild

• Many people consider map/filter not “pythonic”

• They can perform differently (map is “lazier”)

1
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P = [ 2**x for x in range(17) ]

E = [ x for x in range(1000) if x % 2 != 0 ]



EXCEPTIONS
Syntactically correct statement throws an exception:
• tweepy (Python Twitter API) returns “Rate limit exceeded”

• sqlite (a file-based database) returns IntegrityError

13

print('Python', python_version())

try:
cause_a_NameError

except NameError as err:
print(err, '-> some extra text')



PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” à print(“function”)
• 1/2 = 0 à 1/2 = 0.5 and 1//2 = 0
• ASCII str default à default Unicode
Namespace ambiguity fixed:

i = 1
[i for i in range(5)]
print(i)   # ????????
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TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:
• Python 3 introduces features that will throw runtime errors in 

Python 2 (e.g., with statements)

• _future_ module incrementally brings 3 functionality into 2

• https://docs.python.org/2/library/__future__.html

from _future_ import division
from _future_ import print_function
from _future_ import please_just_use_python_3
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PYTHON VS R (FOR 
DATA SCIENTISTS)
There is no right answer here!
• Python is a “full” 

programming language –
easier to integrate with 
systems in the field

• R has a more mature set of 
pure stats libraries …

• … but Python is catching up 
quickly …

• … and is already ahead 
specifically for ML.

You will see Python more in the 
tech industry.
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EXTRA RESOURCES
Plenty of tutorials on the web:
• https://www.learnpython.org/

Work through Project 0, which will take you through some 
baby steps with Python and the Pandas library:
• (We’ll also post some readings soon.)

Come hang out at office hours (or chat with me privately)
• All office hours will be on the website/Piazza very soon.

• Will have coverage MTWThF.
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TODAY’S LECTURE
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Thanks: Zico Kolter’s 15-388



GOTTA CATCH ‘EM ALL
Five ways to get data:
• Direct download and load from local storage
• Generate locally via downloaded code (e.g., simulation)
• Query data from a database (covered in a few lectures)
• Query an API from the intra/internet
• Scrape data from a webpage
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Covered today.



WHEREFORE ART 
THOU, API?
A web-based Application Programming Interface (API) like 
we’ll be using in this class is a contract between a server and 
a user stating:

“If you send me a specific request, I will return some 
information in a structured and documented format.”

(More generally, APIs can also perform actions, may not be 
web-based, be a set of protocols for communicating between 
processes, between an application and an OS, etc.)
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“SEND ME A SPECIFIC 
REQUEST”
Most web API queries we’ll be doing will use HTTP requests:
• conda install –c anaconda requests=2.12.4
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http://docs.python-requests.org/en/master/

r = requests.get( 'https://api.github.com/user',
auth=('user', 'pass')   )

200

r.status_code

r.headers[‘content-type’]

‘application/json; charset=utf8’

r.json()

{u'private_gists': 419, u'total_private_repos': 77, ...}



HTTP REQUESTS
https://www.google.com/?q=cmsc320&tbs=qdr:m

HTTP GET Request:
GET /?q=cmsc320&tbs=qdr:m HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0.1) Gecko/20100101 Firefox/10.0.1 
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??????????

params = { “q”: “cmsc320”, “tbs”: “qdr:m” }
r = requests.get( “https://www.google.com”,

params = params )

*be careful with https:// calls; requests will not verify SSL by default



RESTFUL APIS
This class will just query web APIs, but full web APIs typically 
allow more.

Representational State Transfer (RESTful) APIs:

• GET: perform query, return data

• POST: create a new entry or object

• PUT: update an existing entry or object
• DELETE: delete an existing entry or object

Can be more intricate, but verbs (“put”) align with actions
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QUERYING A RESTFUL API
Stateless: with every request, you send along a 
token/authentication of who you are

GitHub is more than a GETHub:
• PUT/POST/DELETE can edit your repositories, etc.

• Try it out: https://github.com/settings/tokens/new
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token = ”super_secret_token”
r = requests.get(“https://github.com/user”,

params={”access_token”: token})
print( r.content )

{"login":”JohnDickerson","id":472985,"avatar_url":"ht…



AUTHENTICATION 
AND OAUTH
Old and busted:

New hotness:
• What if I wanted to grant an app access to, e.g., my Facebook 

account without giving that app my password?

• OAuth: grants access tokens that give (possibly incomplete) 
access to a user or app without exposing a password
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r = requests.get(“https://api.github.com/user”,
auth=(“JohnDickerson”, “ILoveKittens”))



“… I WILL RETURN INFORMATION 
IN A STRUCTURED FORMAT.”
So we’ve queried a server using a well-formed GET request 
via the requests Python module.  What comes back?

General structured data:
• Comma-Separated Value (CSV) files & strings

• Javascript Object Notation (JSON) files & strings

• HTML, XHTML, XML files & strings

Domain-specific structured data:
• Shapefiles: geospatial vector data (OpenStreetMap)

• RVT files: architectural planning (Autodesk Revit)

• You can make up your own!  Always document it.
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CSV FILES IN PYTHON
Any CSV reader worth anything can parse files with any 
delimiter, not just a comma (e.g., “TSV” for tab-separated)
1,26-Jan,Introduction,—,"pdf, pptx",Dickerson,
2,31-Jan,Scraping Data with Python,Anaconda's Test Drive.,,Dickerson,
3,2-Feb,"Vectors, Matrices, and Dataframes",Introduction to pandas.,,Dickerson,
4,7-Feb,Jupyter notebook lab,,,"Denis, Anant, & Neil",
5,9-Feb,Best Practices for Data Science Projects,,,Dickerson,

Don’t write your own CSV or JSON parser

(We’ll use pandas to do this much more easily and efficiently)
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import csv
with open(“schedule.csv”, ”rb”) as f:

reader = csv.reader(f, delimiter=“,”, quotechar=’”’)
for row in reader:

print(row)



JSON FILES & STRINGS
JSON is a method for serializing objects:
• Convert an object into a string (done in Java in 131/132?)

• Deserialization converts a string back to an object

Easy for humans to read (and sanity check, edit)
Defined by three universal data structures
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Images from: http://www.json.org/

Python dictionary, Java 

Map, hash table, etc …

Python list, Java array, 

vector, etc …

Python string, float, int, 

boolean, JSON object, 

JSON array, …



JSON IN PYTHON
Some built-in types: “Strings”, 1.0, True, False, None
Lists: [“Goodbye”, “Cruel”, “World”]
Dictionaries: {“hello”: “bonjour”, “goodbye”, “au 
revoir”}

Dictionaries within lists within dictionaries within lists:
[1, 2, {“Help”:[

“I’m”, {“trapped”: “in”}, 
“CMSC320”
]}]
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JSON FROM TWITTER
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GET https://api.twitter.com/1.1/friends/list.json?cursor=-
1&screen_name=twitterapi&skip_status=true&include_user_entitie
s=false

{
"previous_cursor": 0,
"previous_cursor_str": "0",
"next_cursor": 1333504313713126852,
"users": [{

"profile_sidebar_fill_color": "252429",
"profile_sidebar_border_color": "181A1E",
"profile_background_tile": false,
"name": "Sylvain Carle",
"profile_image_url": 

"http://a0.twimg.com/profile_images/2838630046/4b82e286a659fae310012520f4f7
56bb_normal.png",

"created_at": "Thu Jan 18 00:10:45 +0000 2007", …



PARSING JSON IN 
PYTHON
Repeat: don’t write your own CSV or JSON parser
• https://news.ycombinator.com/item?id=7796268

• rsdy.github.io/posts/dont_write_your_json_parser_plz.html

Python comes with a fine JSON parser
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import json

r = requests.get( 
“https://api.twitter.com/1.1/statuses/user_timeline.jso
n?screen_name=JohnPDickerson&count=100”, auth=auth )

data = json.loads(r.content)

json.load(some_file)  # loads JSON from a file
json.dump(json_obj, some_file)  # writes JSON to file
json.dumps(json_obj)  # returns JSON string



XML, XHTML, HTML 
FILES AND STRINGS
Still hugely popular online, but JSON has essentially 
replaced XML for:
• Asynchronous browser ßà server calls 
• Many (most?) newer web APIs
XML is a hierarchical markup language:
<tag attribute=“value1”>

<subtag>
Some content goes here

</subtag>
<openclosetag attribute=“value2” />

</tag>

You probably won’t see much XML, but you will see plenty of 
HTML, its substantially less well-behaved cousin …
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Example XML from: Zico Kolter



SCRAPING HTML IN 
PYTHON
HTML – the specification – is fairly pure
HTML – what you find on the web – is horrifying
We’ll use BeautifulSoup:
• conda install -c asmeurer beautiful-soup=4.3.2
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import requests
from bs4 import BeautifulSoup

r = requests.get( 
“https://cs.umd.edu/class/fall2018/cmsc320/” )

root = BeautifulSoup( r.content )
root.find(“div”, id=“schedule”)\

.find(“table”)\ # find all schedule

.find(“tbody”).findAll(“a”)  # links for CMSC320



BUILDING A WEB 
SCRAPER IN PYTHON
Totally not hypothetical situation:
• You really want to learn about data science, so you choose to 

download all of last semester’s CMSC320 lecture slides to 
wallpaper your room …

• … but you now have carpal tunnel syndrome from clicking 
refresh on Piazza last night, and can no longer click on the 
PDF and PPTX links.

Hopeless?  No!  Earlier, you built a scraper to do this!

Sort of.  You only want PDF and PPTX files, not links to other 
websites or files.
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lnks = root.find(“div”, id=“schedule”)\
.find(“table”)\ # find all schedule
.find(“tbody”).findAll(“a”)  # links for CMSC320



REGULAR 
EXPRESSIONS
Given a list of URLs (strings), how do I find only those strings 
that end in *.pdf or *.pptx?

• Regular expressions!
• (Actually Python strings come with a built-in endswith

function.)

What about .pDf or .pPTx, still legal extensions for PDF/PPTX?

• Regular expressions!
• (Or cheat the system again: built-in string lower function.)
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“this_is_a_filename.pdf”.endswith((“.pdf”, “.pptx”))

“tHiS_IS_a_FileNAme.pDF”.lower().endswith(
(“.pdf”, “.pptx”))
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REGULAR EXPRESSIONS
Used to search for specific elements, or groups of elements, 
that match a pattern
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import re

# Find the index of the 1st occurrence of “cmsc320”
match = re.search(r”cmsc320”, text)
print( match.start() )

# Does start of text match “cmsc320”?
match = re.match(r”cmsc320”, text)

# Iterate over all matches for “cmsc320” in text
for match in re.finditer(r”cmsc320”, text):

print( match.start() )

# Return all matches of “cmsc320” in the text
match = re.findall(r”cmsc320”, text)



MATCHING MULTIPLE 
CHARACTERS
Can match sets of characters, or multiple and more elaborate 
sets and sequences of characters:
• Match the character ‘a’: a

• Match the character ‘a’, ‘b’, or ‘c’: [abc]

• Match any character except ‘a’, ‘b’, or ‘c’: [^abc]

• Match any digit: \d (= [0123456789] or [0-9])
• Match any alphanumeric: \w (= [a-zA-Z0-9_])

• Match any whitespace: \s (= [ \t\n\r\f\v])

• Match any character: .

Special characters must be escaped: .^$*+?{}\[]|()
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Thanks to: Zico Kolter



MATCHING SEQUENCES AND 
REPEATED CHARACTERS
A few common modifiers (available in Python and most other 
high-level languages; +, {n}, {n,} may not):
• Match character ‘a’ exactly once: a
• Match character ‘a’ zero or once: a?
• Match character ‘a’ zero or more times: a*

• Match character ‘a’ one or more times: a+
• Match character ‘a’ exactly n times: a{n}
• Match character ‘a’ at least n times: a{n,}

Example: match all instances of “University of <somewhere>” where 
<somewhere> is an alphanumeric string with at least 3 characters:
• \s*University\sof\s\w{3,}
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COMPILED REGEXES
If you’re going to reuse the same regex many times, or if you 
aren’t but things are going slowly for some reason, try 
compiling the regular expression.
• https://blog.codinghorror.com/to-compile-or-not-to-compile/

Interested?  CMSC330, CMSC430, CMSC452, talk to me.
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# Compile the regular expression “cmsc320”
regex = re.compile(r”cmsc320”)

# Use it repeatedly to search for matches in text
regex.match( text )    # does start of text match?
regex.search( text )   # find the first match or None
regex.findall( text )  # find all matches



DOWNLOADING A 
BUNCH OF FILES
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import re
import requests
from bs4 import BeautifulSoup
try:

from urllib.parse import urlparse
except ImportError:

from urlparse import urlparse

Import the modules

# HTTP GET request sent to the URL url
r = requests.get( url )

# Use BeautifulSoup to parse the GET response
root = BeautifulSoup( r.content )
lnks = root.find("div", id="schedule")\

.find("table")\

.find("tbody").findAll("a")

Get some HTML via HTTP



DOWNLOADING A 
BUNCH OF FILES
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# Cycle through the href for each anchor, checking
# to see if it's a PDF/PPTX link or not
for lnk in lnks:

href = lnk['href']

# If it's a PDF/PPTX link, queue a download   
if href.lower().endswith(('.pdf', '.pptx')):

Parse exactly what you want 

urld = urlparse.urljoin(url, href)
rd = requests.get(urld, stream=True)

# Write the downloaded PDF to a file
outfile = path.join(outbase, href)
with open(outfile, 'wb') as f:

f.write(rd.content)

Get some more data?!



NEXT LECTURE

44

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



NEXT CLASS:
NUMPY, SCIPY, AND DATAFRAMES
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