CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
Languages and Machines

- Turing Machines
- PDAs
- CFGs
- Regular Languages
- Context-Free Languages
- Recursive Languages
- Recursively Enumerable Languages

Diagram shows a hierarchical structure of language classes, with Turing Machines at the top and unrestricted grammars at the bottom.
A Few Questions About REs

- How are REs implemented?
 - Implementing a one-off RE is not so hard
 - How to do it in general?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e+ is the same as ee*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- … next comes the math!
Definition: Alphabet

- An **alphabet** is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - **Binary**: $\Sigma = \{0, 1\}$
 - **Decimal**: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - **Alphabetic**: $\Sigma = \{0\text{-}9, a\text{-}z, A\text{-}Z\}$
Definition: String

A **string** is a finite sequence of symbols from Σ

- ε is the empty string ("" in Ruby)
- $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
- Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \} \neq \varepsilon$

Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):

- 0101
- 0101110
- ε

Definition: String concatenation

- String concatenation is indicated by juxtaposition

 \[s_1 = \text{super} \quad \quad \quad s_1s_2 = \text{superhero} \]

 \[s_2 = \text{hero} \]

 - Sometimes also written \(s_1 \cdot s_2 \)

- For any string \(s \), we have \(s\epsilon = \epsilon s = s \)

 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:

 - If \(s_1 = \text{super} \) from \(\Sigma_1 = \{s,u,p,e,r\} \) and \(s_2 = \text{hero} \) from \(\Sigma_2 = \{h,e,r,o\} \), then \(s_1s_2 = \text{superhero} \) from \(\Sigma_3 = \{e,h,o,p,r,s,u\} \)
Definition: Language

- A language L is a set of strings over an alphabet.

- Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{a, aa, ab, ac\}$

- Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{\varepsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots\}$
 - Language of all strings written Σ^*

- Example: All strings of length 0 over alphabet Σ
 - $L = \{s | s \in \Sigma^* \text{ and } |s| = 0\}$
 - “the set of strings s such that s is from Σ^* and has length 0”
 - $= \{\varepsilon\} \neq \emptyset$
Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
 - Give an example element of this language \((123) 456-7890\)
 - Are all strings over the alphabet in the language? \(\text{No}\)
 - Is there a Ruby regular expression for this language?
 \(/\((\d{3})\)d{3}-d{4}/\)

- Example: The set of all valid Ruby programs
 - Later we’ll see how we can specify this language
 - (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** L_1L_2 is defined as
 - $L_1L_2 = \{ xy | x \in L_1 \text{ and } y \in L_2 \}$

- **Union** is defined as
 - $L_1 \cup L_2 = \{ x | x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** is defined as
 - $L^* = \{ x | x = \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Quiz 1: Which string is **not** in L_3

$L_1 = \{ a, \text{ab}, c, \text{d, } \varepsilon \} \quad \text{where } \Sigma = \{ a, b, c, d \}$

$L_2 = \{ \text{d} \}$

$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 1: Which string is \textbf{not} in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ \hspace{1cm} \text{where} \hspace{1cm} \Sigma = \{a, b, c, d\}

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 2: Which string is not in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1L_2^*$

A. a
B. abd
C. adad
D. abdd
Quiz 2: Which string is not in L_3

$L_1 = \{a, \text{ab}, \text{c}, \text{d}, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1L_2^*$

A. a
B. abd
C. adad
D. abdd
Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R:

- $R ::= \emptyset$
 The empty language
- ε
 The empty string
- σ
 A symbol from alphabet Σ
- $R_1 R_2$
 The concatenation of two regexps
- $R_1 | R_2$
 The union of two regexps
- R^*
 The Kleene closure of a regexp
Regular Languages

- Regular expressions denote languages. These are the **regular languages**
 - *aka* regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0 \}$ ($a^n =$ sequence of n a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

- Given an alphabet \(\Sigma \), the regular expressions over \(\Sigma \) are defined inductively as follows

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>{\varepsilon}</td>
</tr>
<tr>
<td>each symbol (\sigma \in \Sigma)</td>
<td>{\sigma}</td>
</tr>
</tbody>
</table>

Constants
Semantics: Regular Expressions (2)

Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

Operations

There are no other regular expressions over Σ.
 TERMINALOGY ETC.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - $a \rightarrow \{a\}$
 - $a|b \rightarrow \{a\} \cup \{b\} = \{a, b\}$
 - $a^* \rightarrow \{\varepsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\varepsilon, a, aa, \ldots\}$

- If $s \in$ language L generated by a RE r, we say that r accepts, describes, or recognizes string s
Precedence

Order in which operators are applied is:

- Kleene closure \(\ast \) > concatenation > union \(|\)
- \(ab|c = (a\,b)\,|\,c\rightarrow \{ab,\,c\}\)
- \(ab^* = a\,(b^*)\rightarrow \{a,\,ab,\,abb\,\ldots\}\)
- \(a|b^* = a\,|\,(b^*)\rightarrow \{a,\,\varepsilon,\,b,\,bb,\,bbb\,\ldots\}\)

We use parentheses () to clarify

- E.g., \(a(b|c),\,(ab)^*,\,(a|b)^*\)
- Using escaped \(\backslash(\) if parens are in the alphabet
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition

- `/Ruby/` – concatenation of single-symbol REs
- `/Ruby|Regular)/` – union
- `/Ruby/*/` – Kleene closure
- `/Ruby+/` – same as `(Ruby)(Ruby)*`
- `/Ruby?/` – same as `(ε|(Ruby))` (// is ε)
- `/[a-z]/` – same as `(a|b|c|...|z)`
- `/[^0-9]/` – same as `(a|b|c|...)` for a,b,c,... ∈ Σ - {0..9}
- `^, $` – correspond to extra symbols in alphabet
Implementing Regular Expressions

- We can implement a regular expression by turning it into a **finite automaton**
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Elements
- States S \((start, final)\)
- Alphabet Σ
- Transition edges δ
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

Accepted? Yes
Finite Automaton: Example 2

Accepted? No

0 0 1 0 1 0
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>S0</td>
<td>Y</td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

A. bcca
B. abbbc
C. ccc
D. ε
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)

A. bcca
B. abbabc
C. ccc
D. ε
What language does this FA accept?

a*b*c*

S3 is a **dead state** — a nonfinal state with no transition to another state.
Finite Automaton: Example 4

Language?

$\text{a}^*\text{b}^*\text{c}^*$ again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown.

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit.
Finite Automaton: Example 5

- **Description for each state**
 - **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
 - **S1** = “Last symbol seen was an a”
 - **S2** = “Last two symbols seen were ab”
 - **S3** = “Last three symbols seen were abb”
Finite Automaton: Example 5

Language as a regular expression?

$(a|b)^*abb$
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in \{a,b\}.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Over $\Sigma=$\{a,b\}, this FA accepts only:

A. A string that contains a single a.
B. Any string in \{a,b\}.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings **containing** two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an **odd** number of 0s and **odd** number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an **odd** number of 0s and **odd** number of 1s

4 states:

<table>
<thead>
<tr>
<th>0s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s

Flip each state